题目内容
9.设奇函数f(x)满足3f(-2)=8+f(2),则f(-2)的值为( )| A. | -4 | B. | -2 | C. | 4 | D. | 2 |
分析 求出f(2)=-f(-2),代入3f(-2)=8+f(2),得到3f(-2)=8-f(-2),解出即可.
解答 解:∵f(x)是奇函数,
∴f(2)=-f(-2),
∵3f(-2)=8+f(2),
∴3f(-2)=8-f(-2),
∴4f(-2)=8,
∴f(-2)=2,
故选:D.
点评 本题考查了求函数值问题,考查函数的奇偶性问题,是一道基础题.
练习册系列答案
相关题目
17.已知向量$\overrightarrow{{A}{B}}$、$\overrightarrow{{A}C}$、$\overrightarrow{{A}D}$满足$\overrightarrow{{A}C}=\overrightarrow{{A}{B}}+\overrightarrow{{A}D}$,$|{\overrightarrow{{A}{B}}}|=2$,$|{\overrightarrow{{A}D}}|=1$,E、F分别是线段BC、CD的中点.若$\overrightarrow{D{E}}•\overrightarrow{{B}F}=-\frac{5}{4}$,则向量$\overrightarrow{{A}{B}}$与向量$\overrightarrow{{A}D}$的夹角为( )
| A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{5π}{6}$ |
4.△ABC是边长为1的等边三角形,已知向量$\vec a$,$\vec b$满足$\overrightarrow{{A}{B}}=\vec a+\vec b$,$\overrightarrow{{A}C}=\vec a-\vec b$,则下列结论错误的是( )
| A. | $|{\vec a}|=\frac{{\sqrt{3}}}{2}$ | B. | $|{\vec b}|=\frac{1}{2}$ | C. | $({\vec a+\vec b})•\vec a=-\frac{1}{4}$ | D. | $\vec a⊥\vec b$ |
14.cos420°+sin330°等于( )
| A. | 1 | B. | -1 | C. | $\frac{1}{2}$ | D. | 0 |
1.
汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,图中描述了甲乙丙三辆汽车,在不同速度下的燃油效率请况,下列叙述错误的是( )
| A. | 消耗1升汽油,乙车行驶的最大路程超过5千米 | |
| B. | 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少 | |
| C. | 甲船以80千米/小时的速度行驶1小时,消耗10升汽油 | |
| D. | 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油 |
19.下列不等式中成立的是( )
| A. | sin(-$\frac{π}{8}$)>sin(-$\frac{π}{10}$) | B. | sin3>sin2 | C. | sin$\frac{7}{5}$π>sin(-$\frac{2}{5}$π) | D. | sin2>cos1 |