题目内容

6.设f(x)是定义在(-π,0)∪(0,π)的奇函数,其导函数为f'(x),且$f(\frac{π}{2})=0$,当x∈(0,π)时,f'(x)sinx-f(x)cosx<0,则关于x的不等式$f(x)<2f(\frac{π}{6})sinx$的解集为(  )
A.$(-\frac{π}{6},0)∪(0,\frac{π}{6})$B.$(-\frac{π}{6},0)∪(\frac{π}{6},π)$C.$(-π,-\frac{π}{6})∪(\frac{π}{6},π)$D.$(-π,-\frac{π}{6})∪(0,\frac{π}{6})$

分析 设g(x)=$\frac{f(x)}{sinx}$,利用导数判断出g(x)单调性,根据函数的单调性求出不等式的解集.

解答 解:设g(x)=$\frac{f(x)}{sinx}$,
∴g′(x)=$\frac{f′(x)sinx-f(x)cosx}{{sin}^{2}x}$,
∵f(x)是定义在(-π,0)∪(0,π)上的奇函数,
故g(-x)=$\frac{f(-x)}{sin(-x)}$=$\frac{f(x)}{sinx}$=g(x)
∴g(x)是定义在(-π,0)∪(0,π)上的偶函数.
∵当0<x<π时,f′(x)sinx-f(x)cosx<0
∴g'(x)<0,
∴g(x)在(0,π)上单调递减,
∴g(x)在(-π,0)上单调递增.
∵f($\frac{π}{2}$)=0,
∴g($\frac{π}{2}$)=$\frac{f(\frac{π}{2})}{sin\frac{π}{2}}$=0,
∵f(x)<2f($\frac{π}{6}$)sinx,
即g($\frac{π}{6}$)•sinx>f(x);
①当sinx>0时,即x∈(0,π),g($\frac{π}{6}$)>$\frac{f(x)}{sinx}$=g(x);
所以x∈($\frac{π}{6}$,π);
②当sinx<0时,即x∈(-π,0)时,g($\frac{π}{6}$)=g(-$\frac{π}{6}$)<$\frac{f(x)}{sinx}$=g(x);
所以x∈(-$\frac{π}{6}$,0);
不等式f(x)<2f($\frac{π}{6}$)sinx的解集为解集为(-$\frac{π}{6}$,0)∪($\frac{π}{6}$,π).
故选:B.

点评 求抽象不等式的解集,一般能够利用已知条件判断出函数的单调性,再根据函数的单调性将抽象不等式转化为具体函的不等式解之.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网