题目内容

17.已知P(x0,y0)是双曲线C:$\frac{{x}^{2}}{2}-{y}^{2}$=1上的一点,F1,F2是C的两个焦点,若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$≥0,则x0的取值范围是(  )
A.[-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$]B.(-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$)C.(-∞,-$\frac{2\sqrt{6}}{3}$]∪[$\frac{2\sqrt{6}}{3}$,+∞)D.(-∞,-$\frac{2\sqrt{6}}{3}$)∪($\frac{2\sqrt{6}}{3}$,+∞)

分析 求得双曲线的a,b,c,可得焦点坐标,运用向量的数量积的坐标表示,可得(-$\sqrt{3}$-x0)($\sqrt{3}$-x0)+y02≥0,再由点P满足双曲线的方程,化简整理,再由双曲线的范围,解不等式即可得到所求范围.

解答 解:双曲线C:$\frac{{x}^{2}}{2}-{y}^{2}$=1的a=$\sqrt{2}$,b=1,c=$\sqrt{3}$,
可得F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),
$\overrightarrow{P{F}_{1}}$=(-$\sqrt{3}$-x0,-y0),$\overrightarrow{P{F}_{2}}$=($\sqrt{3}$-x0,-y0),
$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$≥0,即为(-$\sqrt{3}$-x0)($\sqrt{3}$-x0)+y02≥0,
即有x02+y02-3≥0,
又P(x0,y0)是双曲线上一点,可得$\frac{{{x}_{0}}^{2}}{2}$-y02=1,
即有y02=$\frac{{{x}_{0}}^{2}}{2}$-1,
可得x02+$\frac{{{x}_{0}}^{2}}{2}$≥4,即有|x0|≥$\frac{2\sqrt{6}}{3}$,
由双曲线的性质可得|x0|≥$\sqrt{2}$,
即有x0≥$\frac{2\sqrt{6}}{3}$,或x0≤-$\frac{2\sqrt{6}}{3}$.
故选:C.

点评 本题考查双曲线的方程、性质和运用,考查向量的数量积的坐标表示,以及化简整理的运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网