题目内容
8.在等差数列{an}中,a3+a6=a4+5,且a2不大于1,则a8的取值范围是( )| A. | (-∞,9] | B. | [9,+∞) | C. | (-∞,9) | D. | (9,+∞) |
分析 由等差数列的性质得a3+a6=a4+a5,从而a5=5,又a2≤1,进而d≥$\frac{4}{3}$,由此能求出a8的取值范围.
解答 解:∵在等差数列{an}中,a3+a6=a4+5,且a2不大于1,
又a3+a6=a4+a5,
∴a5=5,又a2≤1,
∴5-3d≤1,∴d≥$\frac{4}{3}$,
∴a8=a5+3d≥5+4=9.
∴a8的取值范围是[9,+∞).
故选:B.
点评 本题考查等差数列的第8项的取值范围的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目
19.已知椭圆$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e,直线l:y=x+1经过椭圆C的一个焦点,点(1,1)关于直线l的对称点也在椭圆C上,则$\frac{2e}{{m}^{2}+1}$+m2的最小值为( )
| A. | 1 | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$-1 | D. | 均不正确 |
13.α,β,γ为不同的平面,a,b,c为三条不同的直线,则下列命题正确的是( )
| A. | 若α⊥γ,β⊥γ,则α∥β | B. | 若a∥β,a∥b,则b∥β | ||
| C. | 若a∥α,b∥α,c⊥a,c⊥b,则c⊥α | D. | 若a⊥γ,b⊥γ,则a∥b |
20.植树节期间我市组织义工参加植树活动,为方便安排任务将所有义工按年龄分组:第l组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的部分频率分布表如下:
(1)求a,b的值;
(2)现在要从年龄较小的第l,2,3组中用分层抽样的方法随机抽取6人担任联系人,在第l,2,3组抽取的义工的人数分别是多少?
(3)在(2)的条件下,从这6人中随机抽取2人担任本次活动的宣传员,求至少有1人年龄在第3组的概率.
| 区间 | 人数 | 频率 | |
| 第1组 | [25,30) | 50 | 0.1 |
| 第2组 | [30,35) | 50 | 0.1 |
| 第3组 | [35,40) | a | 0.4 |
| 第4组 | [40,45) | 150 | b |
(2)现在要从年龄较小的第l,2,3组中用分层抽样的方法随机抽取6人担任联系人,在第l,2,3组抽取的义工的人数分别是多少?
(3)在(2)的条件下,从这6人中随机抽取2人担任本次活动的宣传员,求至少有1人年龄在第3组的概率.
17.已知P(x0,y0)是双曲线C:$\frac{{x}^{2}}{2}-{y}^{2}$=1上的一点,F1,F2是C的两个焦点,若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$≥0,则x0的取值范围是( )
| A. | [-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$] | B. | (-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$) | C. | (-∞,-$\frac{2\sqrt{6}}{3}$]∪[$\frac{2\sqrt{6}}{3}$,+∞) | D. | (-∞,-$\frac{2\sqrt{6}}{3}$)∪($\frac{2\sqrt{6}}{3}$,+∞) |