ÌâÄ¿ÄÚÈÝ
3£®¸ø³öÃüÌ⣺¢Ùº¯Êý$y=cos£¨\frac{3}{2}x+\frac{¦Ð}{2}£©$ÊÇÆæº¯Êý£»
¢ÚÈô¦Á¡¢¦ÂÊǵÚÒ»ÏóÏÞ½ÇÇÒ¦Á£¼¦Â£¬Ôòtan¦Á£¼tan¦Â£»
¢Û$y=2sin\frac{3}{2}x$ÔÚÇø¼ä$[-\frac{¦Ð}{3}£¬\frac{¦Ð}{2}]$ÉϵÄ×îСֵÊÇ-2£¬×î´óÖµÊÇ$\sqrt{2}$£»
¢Ü$x=\frac{¦Ð}{8}$ÊǺ¯Êý$y=sin£¨2x+\frac{5}{4}¦Ð£©$µÄÒ»Ìõ¶Ô³ÆÖᣮ
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊǢ٢ܣ®
·ÖÎö ¶Ô4¸öÃüÌâ·Ö±ð½øÐÐÅжϣ¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º¢Ùº¯Êý$y=cos£¨\frac{3}{2}x+\frac{¦Ð}{2}£©$=-sin$\frac{3}{2}$xÊÇÆæº¯Êý£¬ÕýÈ·£»
¢ÚÈô¦Á¡¢¦ÂÊǵÚÒ»ÏóÏÞ½ÇÇÒ¦Á£¼¦Â£¬È¡¦Á=30¡ã£¬¦Â=390¡ã£¬Ôòtan¦Á=tan¦Â£¬²»ÕýÈ·£»
¢Û$y=2sin\frac{3}{2}x$ÔÚÇø¼ä$[-\frac{¦Ð}{3}£¬\frac{¦Ð}{2}]$ÉϵÄ×îСֵÊÇ-2£¬×î´óÖµÊÇ2£¬²»ÕýÈ·£»
¢Ü$x=\frac{¦Ð}{8}$ÊǺ¯Êý$y=sin£¨2x+\frac{5}{4}¦Ð£©$µÄÒ»Ìõ¶Ô³ÆÖᣬÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ü£®
µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжϣ¬¿¼²éÈý½Çº¯ÊýµÄÐÔÖÊ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®ÉèSnΪµÈ²îÊýÁÐ{an}µÄǰnÏîºÍ£¬ÈôÒÑÖªS6£¼S7£¬S7£¾S8£¬ÔòÏÂÁÐÐðÊöÖÐÕýÈ·µÄ¸öÊýÓУ¨¡¡¡¡£©
¢ÙS7ÊÇËùÓÐSn£¨n¡ÊN*£©ÖеÄ×î´óÖµ£»
¢Úa7ÊÇËùÓÐan£¨n¡ÊN*£©ÖеÄ×î´óÖµ£»
¢Û¹«²îdÒ»¶¨Ð¡ÓÚ0£»
¢ÜS9Ò»¶¨Ð¡ÓÚS6£®
¢ÙS7ÊÇËùÓÐSn£¨n¡ÊN*£©ÖеÄ×î´óÖµ£»
¢Úa7ÊÇËùÓÐan£¨n¡ÊN*£©ÖеÄ×î´óÖµ£»
¢Û¹«²îdÒ»¶¨Ð¡ÓÚ0£»
¢ÜS9Ò»¶¨Ð¡ÓÚS6£®
| A£® | 1¸ö | B£® | 2¸ö | C£® | 3¸ö | D£® | 4¸ö |
18£®ÒÑÖªº¯Êýf£¨x£©=|lgx|£¬Èô0£¼a£¼b£¬ÇÒf£¨a£©=f£¨b£©£¬Ôòa+4bµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨4£¬+¡Þ£© | B£® | [4£¬+¡Þ£© | C£® | £¨5£¬+¡Þ£© | D£® | [5£¬+¡Þ£© |
8£®ÒÑÖªa¡Ü4x3+4x2+1¶ÔÈÎÒâx¡Ê[-2£¬1]¶¼³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨-¡Þ£¬-15] | B£® | £¨-¡Þ£¬1] | C£® | £¨-¡Þ£¬15£© | D£® | £¨0£¬1£© |
15£®ÒÑÖªµãAÊÇÅ×ÎïÏßy=$\frac{1}{4}{x^2}$µÄ¶Ô³ÆÖáÓë×¼ÏߵĽ»µã£¬µãBΪ¸ÃÅ×ÎïÏߵĽ¹µã£¬µãPÔÚ¸ÃÅ×ÎïÏßÉÏÇÒÂú×ã|PB|=m|PA|£¬µ±mÈ¡×îСֵʱ£¬µãPÇ¡ºÃÔÚÒÔA£¬BΪ½¹µãµÄË«ÇúÏßÉÏ£¬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
| A£® | $\frac{{\sqrt{5}+1}}{2}$ | B£® | $\frac{{\sqrt{2}+1}}{2}$ | C£® | $\sqrt{2}+1$ | D£® | $\sqrt{5}-1$ |