题目内容
20.设函数f(x)的导函数为f′(x),对任意x∈R都有f′(x)>f(x)成立,则( )| A. | πf(1)>ef(lnπ) | B. | πf(1)=ef(lnπ) | ||
| C. | πf(1)<ef(lnπ) | D. | πf(1)与ef(lnπ)的大小不确定 |
分析 构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,利用导数可判断g(x)的单调性,由单调性可得g(1)与g(lnπ)的大小关系,整理即可得到答案.
解答 解:令g(x)=$\frac{f(x)}{{e}^{x}}$,则g′=$\frac{f′(x)-f(x)}{{e}^{x}}$,
因为对任意x∈R都有f'(x)>f(x),
所以g′(x)>0,即g(x)在R上单调递增,
又1<lnπ,
所以g(1)<g(lnπ),
所以$\frac{f(1)}{e}$<$\frac{f(lnπ)}{{e}^{lnπ}}$,
即πf(1)<ef(lnπ),
故选C.
点评 本题考查导数的运算及利用导数研究函数的单调性,解决本题的关键是根据选项及已知条件合理构造函数,利用导数判断函数的单调性,属中档题.
练习册系列答案
相关题目
5.已知函数f(x)=x-$\frac{1}{x+1}$,g(x)=x2-2ax+4,若任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),则实数a的取值范围是( )
| A. | [$\frac{15}{8}$,+∞) | B. | [3,+∞) | C. | [$\frac{9}{4}$,+∞) | D. | ($\sqrt{5}$,+∞) |
9.已知函数f(x)=$\frac{1}{2}$x2-x,则f(x)的单调递增区间是( )
| A. | (-∞,-1)和(0,+∞) | B. | (0,+∞) | C. | (-1,0)和(1,+∞) | D. | (1,+∞) |