ÌâÄ¿ÄÚÈÝ
3£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÔÔµãΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=6cos¦È£¨1£©ÈôlµÄ²ÎÊý·½³ÌÖеÄt=$\sqrt{2}$ʱ£¬µÃµ½Mµã£¬ÇóMµÄ¼«×ø±êºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôµãP£¨1£¬1£©£¬lºÍÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó$\frac{1}{|PA|}+\frac{1}{|PB|}$£®
·ÖÎö £¨1£©t=$\sqrt{2}$´úÈëÖ±ÏßlµÄ²ÎÊý·½³ÌÇó³öM£¨0£¬2£©£¬´Ó¶øÇó³öµãMµÄ¼«×ø±ê£¬ÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌÄÜÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÁªÁ¢Ö±ÏßlµÄ²ÎÊý·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌµÃ${t}^{2}+3\sqrt{2}t-4=0$£¬ÓÉ´ËÀûÓÃΤ´ï¶¨ÀíÄÜÇó³ö$\frac{1}{|PA|}+\frac{1}{|PB|}$µÄÖµ£®
½â´ð ½â£º£¨1£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
lµÄ²ÎÊý·½³ÌÖеÄt=$\sqrt{2}$ʱ£¬µÃµ½Mµã£¬
¡àµãMµÄÖ±½Ç×ø±êΪM£¨0£¬2£©£¬
¡à$¦Ñ=\sqrt{0+4}=2$£¬$¦È=\frac{¦Ð}{2}$£¬¡àµãMµÄ¼«×ø±êΪM£¨2£¬$\frac{¦Ð}{2}$£©£¬
¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=6cos¦È£¬¼´¦Ñ2=6¦Ñcos¦È£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2-6x+y2=0£®
£¨2£©ÁªÁ¢Ö±ÏßlµÄ²ÎÊý·½³ÌºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌµÃ£º
${t}^{2}+3\sqrt{2}t-4=0$£¬
Ôò$\left\{\begin{array}{l}{{t}_{1}+{t}_{2}=-3\sqrt{2}}\\{{t}_{1}{t}_{2}=-4£¼0}\end{array}\right.$£¬
¡à$\frac{1}{|PA|}+\frac{1}{|PB|}$=$\frac{1}{|{t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{|{t}_{1}|+|{t}_{2}|}{|{t}_{1}{t}_{2}|}$
=$\frac{|{t}_{1}-{t}_{2}|}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{£¨{t}_{1}+{t}_{2}£©^{2}-4{t}_{1}{t}_{2}}}{|{t}_{1}{t}_{2}|}$=$\frac{\sqrt{34}}{4}$£®
µãÆÀ ±¾Ì⿼²éµãµÄ¼«×ø±êºÍÇúÏߵļ«×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÏÒ³¤µÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ²ÎÊý·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢¼«×ø±ê·½³Ì»¥»¯¹«Ê½µÄºÏÀíÔËÓã®
| A£® | £¨$\frac{¦Ð}{3}$£¬0£© | B£® | £¨ $\frac{¦Ð}{4}$£¬0£© | C£® | £¨-$\frac{¦Ð}{12}$£¬0£© | D£® | £¨$\frac{¦Ð}{2}$£¬0£© |
| A£® | $\sqrt{6}¦Ð$ | B£® | 6¦Ð | C£® | $4\sqrt{3}¦Ð$ | D£® | 12¦Ð |
| A£® | £¨0£¬2£© | B£® | £¨-2£¬0£© | C£® | {1£¬2} | D£® | {1} |