题目内容
4.已知正项数列{an}的前n项和为Sn,且Sn是${a_n}^2$和an的等差中项.(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}={a_n}•{2^{2{a_n}}}$,求数列{bn}的前n项和Tn.
分析 (I)由Sn是${a_n}^2$和an的等差中项,可得$2{S_n}={a_n}^2+{a_n}$,利用递推关系与等差数列的通项公式即可得出.
(II)利用“错位相减法”与等比数列的求和公式即可得出.
解答 解:(I)∵Sn是${a_n}^2$和an的等差中项,∴$2{S_n}={a_n}^2+{a_n}$,
又$2{S_{n-1}}={a_{n-1}}^2+{a_{n-1}}(n≥2)$,
两式相减并化简得(an-an-1-1)(an+an-1)=0,
又an+an-1>0,∴an-an-1=1,
故数列{an}是公差为1的等差数列.
当n=1时,$2{a_1}=2{S_1}={a_1}^2+{a_1}$,又a1>0,∴a1=1.
∴an=1+(n-1)=n.
(II)由(I)知bn=n•22n=n•4n,∴Tn=1•41+2•42+…+n•4n,
∴4Tn=1•42+2•43+…+n•4n+1,
两式相减,得-3Tn=41+42+…+4n-n•4n+1=$\frac{4(1-4n)}{1-4}$-n•4n+1=$\frac{1-3n}{3}$×4n+1-$\frac{4}{3}$.
∴Tn=$\frac{3n-1}{9}$×4n+1+$\frac{4}{9}$=$\frac{4+(3n-1)4n+1}{9}$.
点评 本题考查了数列递推关系、“错位相减法”、等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
14.已知函数f(x)定义在R上的偶函数,且在[0,+∞)上为减函数,若f(log2m)+f(log${\;}_{\frac{1}{2}}$m)≤2f(1),则m的取值范围是( )
| A. | [2,+∞) | B. | (-∞,$\frac{1}{2}$] | C. | ($\frac{1}{2}$,2] | D. | (0,$\frac{1}{2}$]∪[2,+∞) |
19.若函数f(x)=$\left\{\begin{array}{l}{1-{2}^{x},x≤0}\\{{x}^{3}-3x+a,x>0}\end{array}\right.$的值域为[0,+∞),则实数a的取值范围是( )
| A. | 2≤a≤3 | B. | a>2 | C. | a≥2 | D. | 2≤a<3 |
16.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{f(x-3)(x>0)}\end{array}$,则f(2013)=( )
| A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |