题目内容
2.已知函数f(x)=$\left\{\begin{array}{l}{2-|x|},{x≤2}\\{(x-2)^{2}},{x>2}\end{array}\right.$,函数g(x)=b-f(2-x),其中b∈R.若函数y=f(x)-g(x)恰有2个零点,则b的取值范围是2<b,b=$\frac{7}{4}$.分析 求出函数y=f(x)-g(x)的表达式,构造函数h(x)=f(x)+f(2-x),作出函数h(x)的图象,利用数形结合进行求解即可.
解答
解:∵g(x)=b-f(2-x),
∴y=f(x)-g(x)=f(x)-b+f(2-x),
由f(x)-b+f(2-x)=0,得f(x)+f(2-x)=b,
设h(x)=f(x)+f(2-x),
若x≤0,则-x≥0,2-x≥2,
则h(x)=f(x)+f(2-x)=2+x+x2,
若0≤x≤2,则-2≤-x≤0,0≤2-x≤2,
则h(x)=f(x)+f(2-x)=2-x+2-|2-x|=2-x+2-2+x=2,
若x>2,-x<-2,2-x<0,
则h(x)=f(x)+f(2-x)=(x-2)2+2-|2-x|=x2-5x+8.
即h(x)=$\left\{\begin{array}{l}{{x}^{2}+x+2,x≤0}\\{2,0<x≤2}\\{{x}^{2}-5x+8,x>2}\end{array}\right.$,
作出函数h(x)的图象如图:
当x≤0时,h(x)=2+x+x2=(x+$\frac{1}{2}$)2+$\frac{7}{4}$≥$\frac{7}{4}$,
当x>2时,h(x)=x2-5x+8=(x-$\frac{5}{2}$)2+$\frac{7}{4}$≥$\frac{7}{4}$,
故当b=$\frac{7}{4}$时,h(x)=b,有两个交点,
当b=2时,h(x)=b,有无数个交点,
由图象知要使函数y=f(x)-g(x)恰有2个零点,
即h(x)=b恰有2个根,
则满足2<b,b=$\frac{7}{4}$
故答案为:2<b,b=$\frac{7}{4}$.
点评 本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.
| A. | $(0,\frac{1}{4})$ | B. | $(\frac{1}{4},1)$ | C. | (1,4) | D. | (4,+∞) |
| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充要条件 | D. | 既非充分又非必要条件 |