题目内容
1.当x=$\frac{π}{4}$时,函数f(x)=Asin(x+φ)(A>0)取得最小值,则函数y=f($\frac{3π}{4}$-x)是( )| A. | 奇函数且图象关于直线x=$\frac{π}{2}$对称 | B. | 偶函数且图象关于点(π,0)对称 | ||
| C. | 奇函数且图象关于($\frac{π}{2}$,0)对称 | D. | 偶函数且图象关于点($\frac{π}{2}$,0)对称 |
分析 由题意可得sin($\frac{π}{4}$+φ)=-1,解得φ=2kπ-$\frac{3π}{4}$,k∈Z,从而可求y=f($\frac{3π}{4}$-x)=-Asinx,利用正弦函数的图象和性质即可得解.
解答 解:由x=$\frac{π}{4}$时函数f(x)=Asin(x+φ)(A>0)取得最小值,
∴-A=Asin($\frac{π}{4}$+φ),可得:sin($\frac{π}{4}$+φ)=-1,
∴$\frac{π}{4}$+φ=2kπ-$\frac{π}{2}$,k∈Z,解得:φ=2kπ-$\frac{3π}{4}$,k∈Z,
∴f(x)=Asin(x-$\frac{3π}{4}$),
∴y=f($\frac{3π}{4}$-x)=Asin($\frac{3π}{4}$-x-$\frac{3π}{4}$)=-Asinx,
∴函数是奇函数,排除B,D,
∵由x=$\frac{π}{2}$时,可得sin$\frac{π}{2}$取得最大值1,故C错误,图象关于直线x=$\frac{π}{2}$对称,A正确;
故选:A.
点评 本题主要考查了正弦函数的图象和性质,考查了数形结合能力,属于基础题.
练习册系列答案
相关题目
12.设点A(3,3,1),B(1,0,5),C(0,1,0),则线段AB的中点与点C的距离为( )
| A. | $\frac{\sqrt{13}}{4}$ | B. | $\frac{\sqrt{13}}{2}$ | C. | $\frac{\sqrt{53}}{4}$ | D. | $\frac{\sqrt{53}}{2}$ |
16.若函数y=f(x)的图象上存在关于原点对称的两点M,N,则称函数f(x)有一组“对点”(“M与N”和“N与M”视为同一组“对点”),已知f(x)=$\left\{\begin{array}{l}{2x^2+4x,x<0}\\{\frac{m}{e^x},x≥0}\end{array}\right.$,有两组“对点”,则非零实数m的取值范围是( )
| A. | ((4-4$\sqrt{2}$)•e${\;}^{-\sqrt{2}}$,0)∪(0,(4$\sqrt{2}$-4)•e${\;}^\sqrt{2}$) | B. | ((2-2$\sqrt{2}$)•e${\;}^{-\sqrt{2}}$,0)∪(0,(2$\sqrt{2}$-2)•e${\;}^\sqrt{2}$) | ||
| C. | (0,(2$\sqrt{2}$-2)•e${\;}^\sqrt{2}$) | D. | (0,(4$\sqrt{2}$-4)•e${\;}^\sqrt{2}$) |
6.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,|$\overrightarrow{a}$+$\overrightarrow{b}$|=4,则$\overrightarrow{a}$-$\overrightarrow{b}$=( )
| A. | $\sqrt{10}$ | B. | 10 | C. | $\sqrt{5}$ | D. | 3 |
13.已知集合A={x|x2-2x-3=0},B={x|-2<x<3},则A∩B=( )
| A. | {-1,3} | B. | {-1} | C. | {3} | D. | ∅ |
10.
在棱长为1的正方体ABCD-A1B1C1D1中,E为线段B1C的中点,F是棱C1D1上的动点,若点P为线段BD1上的动点,则PE+PF的最小值为( )
| A. | $\frac{1+\sqrt{2}}{2}$ | B. | $\frac{3\sqrt{2}}{2}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{5\sqrt{2}}{6}$ |