题目内容
已知数列{an},a1=
,且满足an=
.
(1)求证:数列{
}是等差数列;
(2)设bn=anan+1,bn的前n项和为Sn,求Sn的取值范围.
| 1 |
| 2 |
| an+1 |
| 1-2an+1 |
(1)求证:数列{
| 1 |
| an |
(2)设bn=anan+1,bn的前n项和为Sn,求Sn的取值范围.
考点:数列的求和,等差关系的确定,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由an=
,得
-
=2,由此能证明数列{
}是等差数列.
(Ⅱ)由bn=anan+1=
=
=
(
-
),利用裂项求和法能求出
≤Sn<
.
| an+1 |
| 1-2an+1 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
(Ⅱ)由bn=anan+1=
| 1 |
| 2n(2n+2) |
| 1 |
| 4n(n+1) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 8 |
| 1 |
| 4 |
解答:
(Ⅰ)证明:由an=
,
得an-2anan+1=an+1,
∴
-
=2,(2分)
∴数列{
}是等差数列.(4分)
(Ⅱ)解:∵a1=
,∴
=2,
=2+(n-1)×2=2n,
∴an=
,(6分)
∴bn=anan+1=
=
=
(
-
),
∴Sn=
(1-
+
-
+…+
-
)=
(1-
)<
,(9分)]
∵Sn=
(1-
)是递增数列,∴(Sn)min=S1=
,
∴
≤Sn<
.(12分)
| an+1 |
| 1-2an+1 |
得an-2anan+1=an+1,
∴
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
(Ⅱ)解:∵a1=
| 1 |
| 2 |
| 1 |
| a1 |
| 1 |
| an |
∴an=
| 1 |
| 2n |
∴bn=anan+1=
| 1 |
| 2n(2n+2) |
| 1 |
| 4n(n+1) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| 4 |
∵Sn=
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| 8 |
∴
| 1 |
| 8 |
| 1 |
| 4 |
点评:本题考查等差数列的证明,考查数列的前n项和的取值范围的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
设集合M={x|x=
+
,k∈Z},N={x|x=kπ±
,k∈Z},则M、N的关系是( )
| kπ |
| 2 |
| π |
| 4 |
| π |
| 4 |
| A、M=N | B、M≠N |
| C、M?N | D、M?N |