题目内容
18.若函数f(x)=lnx+$\frac{a}{x}$在区间[1,e]上的最小值为$\frac{3}{2}$,则实数a的值为$\sqrt{e}$.分析 对原函数求导,然后分a<1,1≤a≤e,e<a,情况讨论原函数在[1,e]上的单调性,并求得最小值,由最小值等于$\frac{3}{2}$求得a的值.
解答 解:由f(x)=lnx+$\frac{a}{x}$(x>0),得f′(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$=$\frac{x-a}{{x}^{2}}$,
f′(x)=0则x=a,若a<1,则f(x)min=f(1)=a=$\frac{3}{2}$,不满足题意;
若a>e,则f(x)min=f(e)=1+$\frac{a}{e}$=$\frac{3}{2}$,则a=$\frac{e}{2}$<e,不合题意;
若e≥a≥1,则f(x)min=f(a)=lna+1=$\frac{3}{2}$,则a=$\sqrt{e}$<e,满足题意;
故答案为:$\sqrt{e}$.
点评 本题考查利用导数研究函数的单调性,考查了利用导数求函数的最值,着重考查分类讨论的数学思想方法,是中高档题.
练习册系列答案
相关题目
6.在调查480名男人中有38名患有色盲,520名女人中有6名患有色盲,根据调查数据作出如下的列联表:
利用独立性检验的方法来判断色盲与性别有关?你所得到的结论在什么范围内有效?
注:χ2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(χ2≥10.828)≈0.001,P(χ2≥5.024)≈0.025,P(χ2≥6.635)≈0.01.
| 色盲 | 不色盲 | 合计 | |
| 男 | 38 | 442 | 480 |
| 女 | 6 | 514 | 520 |
| 合计 | 44 | 956 | 1000 |
注:χ2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(χ2≥10.828)≈0.001,P(χ2≥5.024)≈0.025,P(χ2≥6.635)≈0.01.
10.已知命题p:函数f(x)=|4x-a|-ax(a>0)存在最小值;命题q:关于x的方程2x2-(2a-2)x+3a-7=0有实数根.则使“命题p∨?q为真,p∧?q为假”的一个必要不充分的条件是( )
| A. | 3≤a<5 | B. | 0<a<4 | C. | 4<a<5或0≤a≤3 | D. | 3<a<5或0≤a<3 |
8.下列四个图象中,不是函数图象的是( )
| A. | B. | C. | D. |