题目内容

6.在调查480名男人中有38名患有色盲,520名女人中有6名患有色盲,根据调查数据作出如下的列联表:
色盲不色盲合计
38442480
6514520
合计449561000
利用独立性检验的方法来判断色盲与性别有关?你所得到的结论在什么范围内有效?
注:χ2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(χ2≥10.828)≈0.001,P(χ2≥5.024)≈0.025,P(χ2≥6.635)≈0.01.

分析 由已知中的2×2列联表,求出χ2值,根据临界值表,可得结论.

解答 (12分)解:根据题目所给的数据作出如下的列联表:

色盲不色盲合计
38442480
6514520
合计449561 000
根据列联表所给的数据可以有
a=38,b=442,c=6,d=514,a+b=480,c+d=520,
a+c=44,b+d=956,n=1 000,
由Χ2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
得到观测值为Χ2=$\frac{{1,000×{{(38×514-6×442)}^2}}}{480×520×44×956}$≈27.1.
由27.1>6.635,所以我们有99%的把握认为患色盲与性别有关系,这个结论只对所调查的480名男人和520名女人有效.

点评 本题考查的知识点是独立性检验的应用,难度不大,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网