题目内容

19.计算下列定积分.
(1)$\int_{-3}^2{|{x+1}|}dx$
(2)设$f(x)=\left\{\begin{array}{l}{x^2}(0≤x<1)\\ 2-x(1≤x≤2)\end{array}\right.$,则$\int_0^2{f(x)dx}$.

分析 (1)根据绝对值函数,分段求出定积分即可,
(2)根据分段函数,分别求出定积分即可.

解答 解:(1)$\int_{-3}^2{|{x+1}|}dx$=${∫}_{-1}^{2}$(x+1)dx+${∫}_{-3}^{-1}$(-x-1)dx,
=($\frac{1}{2}$x2+x)|${\;}_{-1}^{2}$-($\frac{1}{2}$x2+x)|${\;}_{-3}^{-1}$,
=2+2-$\frac{1}{2}$+1-($\frac{1}{2}$-1-$\frac{9}{2}$+3),
=$\frac{13}{2}$;
(2)设$f(x)=\left\{\begin{array}{l}{x^2}(0≤x<1)\\ 2-x(1≤x≤2)\end{array}\right.$,
则$\int_0^2{f(x)dx}$=${∫}_{0}^{1}$x2dx+${∫}_{1}^{2}$(2-x)dx,
=$\frac{1}{3}$x3|${\;}_{0}^{1}$+(2x-$\frac{1}{2}$x2)|${\;}_{1}^{2}$,
=$\frac{1}{3}$+(4-2)-(2-$\frac{1}{2}$),
=$\frac{5}{6}$.

点评 本题考查了分段函数的定积分的求法,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网