ÌâÄ¿ÄÚÈÝ
¶¨ÒåÔÚRÉϵĺ¯Êýg(x)¼°¶þ´Îº¯Êýh(x)Âú×㣺g(x)£«2g(£x)£½ex£«
£9£¬h(£2)£½h(0)£½1ÇÒh(£3)£½£2.
(1)Çóg(x)ºÍh(x)µÄ½âÎöʽ£»
(2)¶ÔÓÚx1£¬x2¡Ê[£1,1]£¬¾ùÓÐh(x1)£«ax1£«5¡Ýg(x2)£x2g(x2)³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£»
(3)Éèf(x)£½
ÔÚ(2)µÄÌõ¼þÏ£¬ÌÖÂÛ·½³Ìf[f(x)]£½a£«5µÄ½âµÄ¸öÊýÇé¿ö£®
½â£º(1)¡ßg(x)£«2g(£x)£½ex£«
£9£¬¢Ù
¡àg(£x)£«2g(x)£½e£x£«
£9£¬¼´g(£x)£«2g(x)£½2ex£«
£9£¬¢Ú
ÓÉ¢Ù¢ÚÁªÁ¢½âµÃ£¬g(x)£½ex£3.
¡ßh(x)ÊǶþ´Îº¯Êý£¬ÇÒh(£2)£½h(0)£½1£¬¿ÉÉèh(x)£½ax(x£«2)£«1£¬
ÓÉh(£3)£½£2£¬½âµÃa£½£1£¬
¡àh(x)£½£x(x£«2)£«1£½£x2£2x£«1£¬
¡àg(x)£½ex£3£¬h(x)£½£x2£2x£«1.
(2)Éè¦Õ(x)£½h(x)£«ax£«5£½£x2£«(a£2)x£«6£¬
F(x)£½g(x)£xg(x)£½ex£3£x(ex£3)£½(1£x)ex£«3x£3£¬
ÒÀÌâÒâÖª£¬µ±£1¡Üx¡Ü1ʱ£¬¦Õ(x)min¡ÝF(x)max.
¡ßF¡ä(x)£½£ex£«(1£x)ex£«3£½£xex£«3£¬ÔÚ[£1,1]Éϵ¥µ÷µÝ¼õ£¬
¡àF¡ä(x)min£½F¡ä(1)£½3£e>0£¬
¡àF(x)ÔÚ[£1,1]Éϵ¥µ÷µÝÔö£¬¡àF(x)max£½F(1)£½0£¬
¡à
½âµÃ£3¡Üa¡Ü7£¬
¡àʵÊýaµÄȡֵ·¶Î§Îª[£3,7]£®
(3)Éèt£½a£«5£¬ÓÉ(2)Öª£¬2¡Üt¡Ü12.
f(x)µÄͼÏóÈçͼËùʾ£º
![]()
Éèf(x)£½T£¬Ôòf(T)£½t.
µ±t£½2£¬¼´a£½£3ʱ£¬T£½£1»òÕßT£½ln 5£¬f(x)£½£1ÓÐ2¸ö½â£¬f(x)£½ln 5ÓÐ3¸ö½â£»
µ±2<t<e2£3£¬¼´£3<a<e2£8ʱ£¬T£½ln(t£«3)ÇÒln 5<T<2£¬f(x)£½TÓÐ3¸ö½â£»
µ±t£½e2£3£¬¼´a£½e2£8ʱ£¬T£½2£¬f(x)£½TÓÐ2¸ö½â£»
µ±e2£3<t¡Ü12£¬¼´e2£8<a¡Ü7ʱ£¬T£½ln(t£«3)>2£¬f(x)£½TÓÐ1¸ö½â£®
×ÛÉÏËùÊö£º
µ±a£½£3ʱ£¬·½³ÌÓÐ5¸ö½â£»
µ±£3<a<e2£8ʱ£¬·½³ÌÓÐ3¸ö½â£»
µ±a£½e2£8ʱ£¬·½³ÌÓÐ2¸ö½â£»
µ±e2£8<a¡Ü7ʱ£¬·½³ÌÓÐ1¸ö½â£®