题目内容
17.已知$\overrightarrow a=(2,4),\overrightarrow b=(x,-2),且\overrightarrow a∥\overrightarrow b$,则x=-1.分析 利用向量共线定理即可得出.
解答 解:∵$\overrightarrow{a}∥\overrightarrow{b}$,∴4x+4=0,解得x=-1.
故答案为:-1.
点评 本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
7.
为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,得到如下的频率分布表:
请你根据频率分布表解答下列问题:
(1)求出频率分布表中①、②、③、④、⑤处的值;
(2)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序功能是什么?求输出S的值.
| 序号 (i) | 分组 (分数) | 组中值 (Gi) | 频数 (人数) | 频率 (Fi) |
| 1 | [60,70) | 65 | ① | 0.10 |
| 2 | [70,80) | 75 | 20 | ② |
| 3 | [80,90) | 85 | ③ | 0.20 |
| 4 | [90,100) | 95 | ④ | ⑤ |
| 合计 | 50 | 1 | ||
(1)求出频率分布表中①、②、③、④、⑤处的值;
(2)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序功能是什么?求输出S的值.
8.若f(x)在R上可导,$f(x)={x^2}+2f'(\frac{π}{2})x+sin2x$,则$\int_0^1{f(x)dx}$=( )
| A. | $\frac{7}{3}-π-cos2$ | B. | $\frac{11}{6}-π+\frac{1}{2}cos2$ | C. | $\frac{17}{6}-π-\frac{1}{2}cos2$ | D. | $\frac{11}{6}-π-\frac{1}{2}cos2$ |
12.△ABC中,角A、B、C所对的边分别是a、b、c,若a=2,b=3,$c=\sqrt{5}$,则cosC=( )
| A. | $\frac{2}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |