题目内容

若集合M={y|y=2x},P={x|y=
x-1
},M∩P=(  )
A、[1,+∞)
B、[0,+∞)
C、(0,+∞)
D、(1,+∞)
考点:交集及其运算
专题:集合
分析:求出集合M,N,根据集合的基本运算即可得到结论.
解答: 解:M={y|y=2x}={y|y>0},P={x|y=
x-1
}={x|x≥1},
则M∩P={x|x≥1},
故选:A.
点评:本题主要考查集合的基本运算,根据函数性质求出集合M,N是解决本题的关键,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网