题目内容

11.人的体重是人的身体素质的重要指标之一.某校抽取了高二的部分学生,测出他们的体重(公斤),体重在40公斤至65公斤之间,按体重进行如下分组:第1组[40,45),第2组[45,50),第3组[50,55),第4组[55,60),第5组[60,65],并制成如图所示的频率分布直方图,已知第1组与第3组的频率之比为1:3,第3组的频数为90.
(Ⅰ)求该校抽取的学生总数以及第2组的频率;
(Ⅱ)用这些样本数据估计全市高二学生(学生数众多)的体重.若从全市高二学生中任选5人,设X表示这5人中体重不低于55公斤的人数,求X的分布列和数学期望.

分析 (Ⅰ)设该校抽查的学生总人数为n,第2组、第3组的频率分别为p2,p3,先求出p3,由此能求出n,由p2+0.375+(0.025+0.013+0.037)×5=1,求出p2,由此能求出该校抽查的学生总人数和从左到右第2组的频率.
(Ⅱ)由(Ⅰ)知:体重不低于55公斤的学生的概率为$\frac{1}{4}$,X服从二项分布$X~B(5,\frac{1}{4})$,由此能求出随机变量X的分布列和数学期望.

解答 (本小题满分12分)
(Ⅰ)设该校抽查的学生总人数为n,第2组、第3组的频率分别为p2,p3
则p3=0.025×3×5=0.375,所以$n=\frac{90}{p_3}=240$,(3分)
由p2+0.375+(0.025+0.013+0.037)×5=1,解得p2=0.25,
所以该校抽查的学生总人数为240人,从左到右第2组的频率为0.25.(6分)
(Ⅱ)由(Ⅰ)知:体重不低于55公斤的学生的概率为$p=(0.013+0.037)×5=\frac{1}{4}$,(8分)
X服从二项分布$X~B(5,\frac{1}{4})$,$p(X=k)=C_5^k{(\frac{1}{4})^k}{(\frac{3}{4})^{5-k}}$,k=0,1,2,3,4,5,(9分)
P(X=0)=${C}_{5}^{0}(\frac{3}{4})^{5}=\frac{243}{1024}$,
P(X=1)=${C}_{5}^{1}(\frac{1}{4})(\frac{3}{4})^{4}=\frac{405}{1024}$,
P(X=2)=${C}_{5}^{2}(\frac{1}{4})^{2}(\frac{3}{4})^{3}$=$\frac{270}{1024}$,
P(X=3)=${C}_{5}^{3}(\frac{1}{4})^{3}(\frac{3}{4})^{2}$=$\frac{90}{1024}$,
P(X=4)=${C}_{5}^{4}(\frac{1}{4})^{4}(\frac{3}{4})$=$\frac{15}{1024}$,
P(X=5)=${C}_{5}^{5}(\frac{1}{4})^{5}$=$\frac{1}{1024}$,
所以随机变量X的分布列为:

X012345
P$\frac{243}{1024}$$\frac{405}{1024}$$\frac{270}{1024}$$\frac{90}{1024}$$\frac{15}{1024}$$\frac{1}{1024}$
(10分)
则$EX=5×\frac{1}{4}=\frac{5}{4}$.(12分)

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网