题目内容

1.某青少年成长关爱机构为了调研所在地区青少年的年龄与身高壮况,随机抽取6岁,9岁,12岁,15岁,18岁的青少年身高数据各1000个,根据各年龄段平均身高作出如图所示的散点图和回归直线L.根据图中数据,下列对该样本描述错误的是(  )
A.据样本数据估计,该地区青少年身高与年龄成正相关
B.所抽取数据中,5000名青少年平均身高约为145cm
C.直线L的斜率的值近似等于样本中青少年平均身高每年的增量
D.从这5种年龄的青少年中各取一人的身高数据,由这5人的平均年龄和平均身高数据作出的点一定在直线L上

分析 根据散点图与线性回归方程的意义,对选项中的命题进行分析、判断正误即可.

解答 解:对于A,根据样本数据的回归直线从左向右是上升的,
估计该地区青少年身高与年龄成正相关,正确;
对于B,计算平均数为$\frac{1}{5}$×(108+128.5+147.6+164.5+176.4)=145,
估计这5000名青少年平均身高约为145cm,正确;
对于C,根据回归直线的意义知,
直线L的斜率的值近似等于样本中青少年平均身高每年的增量,正确;
对于D,根据回归直线的定义知,回归直线必过样本数据的中心点,
不是必过某些数据的中心点,D错误.
故选:D.

点评 本题考查了散点图与线性回归方程的应用问题,是基础题.

练习册系列答案
相关题目
19.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元,距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图(图):
(1)试根据频率分布直方图估计小区平均每户居民的平均损失;
(同一组中的数据用该组区间的中点值作代表);
(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过6000元的居民中随机抽出2户进行捐款援助,求抽出的2户居民损失均超过8000元的概率;
(3)台风后区委会号召该小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如表,在图2表格空白外填写正确数字,并说明是否有95%以上的把握认为捐款数额超过或不超过500元和自身经济损失是否超过4000元有关?
经济损失不超过4000元经济损失超过4000元合计
捐款超过500元30
捐款不超过500元6
合计
附:临界值参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网