题目内容
设关于x的二次方程x2-ax+a2-19=0和x2-5x+6=0的解集分别是集合A和B,若A∩B为单元素集,求a的值.
考点:交集及其运算
专题:集合
分析:求解一元二次方程化简集合B={2,3},然后根据A∩B为单元素集说明2或3仅有一个在集合A中,分别把2,3代入方程x2-ax+a2-19=0,求解a的值后验证得答案.
解答:
解:解方程x2-5x+6=0,得x1=2,x2=3,∴B={2,3},
∵A∩B为单元素集,
∴2或3仅有一个在集合A中,
当2∈A时,有a2-2a-15=0,
∴a=5或-3,
a=5时,A={2,3}不合题意,
a=-3,A={-5,2},满足A∩B为单元素集,
∴a=-3;
当3∈A时,有a2-3a-10=0
∴a=5或-2,
a=5时,A={2,3}不合题意,
a=-2时,A={-5,3},满足A∩B为单元素集,
∴a=-2.
综上得a=-3或-2.
∵A∩B为单元素集,
∴2或3仅有一个在集合A中,
当2∈A时,有a2-2a-15=0,
∴a=5或-3,
a=5时,A={2,3}不合题意,
a=-3,A={-5,2},满足A∩B为单元素集,
∴a=-3;
当3∈A时,有a2-3a-10=0
∴a=5或-2,
a=5时,A={2,3}不合题意,
a=-2时,A={-5,3},满足A∩B为单元素集,
∴a=-2.
综上得a=-3或-2.
点评:本题考查交集及其运算,考查了一元二次方程的解法,体现了分类讨论的数学解题思想方法,是基础题.
练习册系列答案
相关题目
已知数列{an}是等差数列,且a3+a6=5,数列{bn}是等比数列,且b5=
,则b2•b8=( )
| a2+5a5 |
| A、1 | B、5 | C、10 | D、15 |
设变量x,y满足约束条件
.目标函数z=ax+2y仅在(1,0)处取得最小值,则a的取值范围为( )
|
| A、(-1,2) |
| B、(-2,4) |
| C、(-4,0] |
| D、(-4,2) |