ÌâÄ¿ÄÚÈÝ
14£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£©£¬ÒÔÔµãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=4$\sqrt{2}$£®£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÉèPΪÇúÏßC1Éϵ͝µã£¬ÇóµãPµ½C2ÉϵãµÄ¾àÀëµÄ×îСֵ£®
·ÖÎö £¨I£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÆÕͨ·½³Ì£®ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ
¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=4$\sqrt{2}$£¬Õ¹¿ªÀûÓû¥»¯¹«Ê½¼´¿ÉµÃ³ö£®
£¨II£©ÉèP$£¨\sqrt{3}cos¦Á£¬sin¦Á£©$£¬µãPµ½C2ÉϵãµÄ¾àÀëµÄ×îСֵ=$\frac{|\sqrt{3}cos¦Á+sin¦Á-8|}{\sqrt{2}}$=$\frac{|2sin£¨¦Á+\frac{¦Ð}{3}£©-8|}{\sqrt{2}}$£¬ÀûÓÃÈý½Çº¯ÊýµÄµ¥µ÷ÐÔÓëÖµÓò¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨I£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃ£º$\frac{{x}^{2}}{3}$+y2=1£®
ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=4$\sqrt{2}$£¬Õ¹¿ª¿ÉµÃ£º$\frac{\sqrt{2}}{2}$¦Ñ£¨cos¦È+sin¦È£©=4$\sqrt{2}$£¬
»¯ÎªÖ±½Ç×ø±ê·½³Ì£ºx+y-8=0£®
£¨II£©ÉèP$£¨\sqrt{3}cos¦Á£¬sin¦Á£©$£¬
µãPµ½C2ÉϵãµÄ¾àÀëµÄ×îСֵ=$\frac{|\sqrt{3}cos¦Á+sin¦Á-8|}{\sqrt{2}}$=$\frac{|2sin£¨¦Á+\frac{¦Ð}{3}£©-8|}{\sqrt{2}}$
¡Ý$\frac{6}{\sqrt{2}}$=3$\sqrt{2}$£¬µ±ÇÒ½öµ±$sin£¨¦Á+\frac{¦Ð}{3}£©$=1ʱȡµÈºÅ£®
¡àµãPµ½C2ÉϵãµÄ¾àÀëµÄ×îСֵΪ3$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³ÌµÄÓ¦Óᢼ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢µãµ½Ö±ÏߵľàÀ빫ʽ¡¢Èý½Çº¯ÊýµÄµ¥µ÷ÐÔÓëÖµÓò£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
¢Ùa£¾b£¾0ÊÇa2£¾b2µÄ³äÒªÌõ¼þ£®
¢Úa£¾b£¾0ÊÇ$\frac{1}{a}£¼\frac{1}{b}$µÄ³äÒªÌõ¼þ£®
¢Ûa£¾b£¾0ÊÇa3£¾b3µÄ³äÒªÌõ¼þ£®
¢Üa£¾b£¾0ÊÇ$\sqrt{a}$£¾$\sqrt{b}$µÄ³äÒªÌõ¼þ£®
ÔòÆäÖÐÕýÈ·µÄ˵·¨ÓУ¨¡¡¡¡£©
| A£® | 0¸ö | B£® | 1¸ö | C£® | 2¸ö | D£® | 3¸ö |
| A£® | ln2 | B£® | 1 | C£® | $-\frac{1}{2}$ | D£® | e |