题目内容

12.如图所示,已知斜三棱柱ABC-A1B1C1,点M,N分别在AC1和BC上,且满足$\overrightarrow{AM}$=k$\overrightarrow{A{C}_{1}}$,$\overrightarrow{BN}$=k$\overrightarrow{BC}$(0≤k≤1).
①向量$\overrightarrow{MN}$是否与向量$\overrightarrow{AB}$,$\overrightarrow{A{A}_{1}}$共面?
②直线MN是否与平面ABB1A1平行?

分析 ①利用向量的线性运算即可得出,向量$\overrightarrow{MN}$是否与向量$\overrightarrow{AB}$,$\overrightarrow{A{A}_{1}}$共面.
②由①得向量$\overrightarrow{MN}$是否与向量$\overrightarrow{AB}$,$\overrightarrow{A{A}_{1}}$共面.,且MN?面ABB1A1可判定.

解答 解:①$\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}=\overrightarrow{AB}+k(\overrightarrow{AC}-\overrightarrow{AB})$=(1-k)$\overrightarrow{AB}$+k$\overrightarrow{AC}$.
$\overrightarrow{AM}=k\overrightarrow{A{C}_{1}}=k(\overrightarrow{A{A}_{1}}+\overrightarrow{AC})$,
∴$\overrightarrow{MN}=\overrightarrow{AN}-\overrightarrow{AM}=(1-k)\overrightarrow{AB}-k\overrightarrow{A{A}_{1}}$∴向量$\overrightarrow{MN}$是否与向量$\overrightarrow{AB}$,$\overrightarrow{A{A}_{1}}$共面.
②由①得向量$\overrightarrow{MN}$是否与向量$\overrightarrow{AB}$,$\overrightarrow{A{A}_{1}}$共面.,且MN?面ABB1A1
∴直线MN是否与平面ABB1A1平行.

点评 本题考查了空间向量的线性运算,及向量共面的判定、本质意义,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网