ÌâÄ¿ÄÚÈÝ
3£®ÉèA£¬B·Ö±ðÊÇÖ±Ïßy=$\frac{{2\sqrt{5}}}{5}$xºÍy=-$\frac{{2\sqrt{5}}}{5}$xÉϵ͝µã£¬ÇÒ|AB|=2$\sqrt{5}$£¬ÉèOÎª×ø±êԵ㣬¶¯µãPÂú×ã$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£®£¨¢ñ£©Ç󶯵ãPµÄ¹ì¼£·½³Ì£»
£¨¢ò£©Ð±ÂÊΪ1²»¾¹ýÔµãO£¬ÇÒÓ붯µãPµÄ¹ì¼£ÏཻÓÚC£¬DÁ½µã£¬MΪÏß¶ÎCDµÄÖе㣬ֱÏßCDÓëÖ±ÏßOMÄÜ·ñ´¹Ö±£¿Ö¤Ã÷ÄãµÄ½áÂÛ£®
·ÖÎö £¨¢ñ£©Éè³öA£¬B×ø±ê£¬PµÄ×ø±ê£¬ÀûÓÃÏòÁ¿¹ØÏµ£¬|AB|¾àÀë¼´¿ÉÇ󶯵ãPµÄ¹ì¼£·½³Ì£»
£¨¢ò£©Ö±ÏßCDÓëÖ±ÏßOM²»´¹Ö±£®ÉèC£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬ÀûÓÃÆ½·½²î·¨×ª»¯Çó½â¼´¿É£®
½â´ð ½â£º£¨¢ñ£©Éè$A£¨{x_1}£¬\frac{{2\sqrt{5}}}{5}{x_1}£©£¬B£¨{x_2}£¬-\frac{{2\sqrt{5}}}{5}{x_2}£©£¬P£¨x£¬y£©$£¬¡£¨1·Ö£©
¡ß$\overrightarrow{OP}=\overrightarrow{OA}+\overrightarrow{OB}$£¬¡à$x={x_1}+{x_2}£¬y=\frac{{2\sqrt{5}}}{5}£¨{x_1}-{x_2}£©$£®¡£¨3·Ö£©
¡ß$|AB|=2\sqrt{5}$£¬¡à$20={£¨{x_1}-{x_2}£©^2}+{£¨\frac{{2\sqrt{5}}}{5}{x_1}+\frac{{2\sqrt{5}}}{5}{x_2}£©^2}$£¬¡£¨5·Ö£©£¬
$20=\frac{5}{4}{y^2}+\frac{4}{5}{x^2}$£¬
¡à¶¯µãPµÄ¹ì¼£·½³Ì$\frac{x^2}{25}+\frac{y^2}{16}=1$£®¡£¨6·Ö£©
£¨¢ò£©Ö±ÏßCDÓëÖ±ÏßOM²»´¹Ö±£®
ÉèC£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬$\left\{\begin{array}{l}\frac{x_3^2}{25}+\frac{y_3^2}{16}=1\\ \frac{x_4^2}{25}+\frac{y_4^2}{16}=1\end{array}\right.$¡£¨8·Ö£©
$\frac{{£¨{x_3}-{x_4}£©£¨{x_3}+{x_4}£©}}{25}+\frac{{£¨{y_3}-{y_4}£©£¨{y_3}+{y_4}£©}}{16}=0$£¬¡£¨10·Ö£©
¡ßÖ±ÏßCDµÄбÂÊΪ1£¬
¡à$\frac{{£¨{y_3}+{y_4}£©}}{{£¨{x_3}+{x_4}£©}}=-\frac{16}{25}$£¬¡£¨11·Ö£©
¡àÖ±ÏßOMµÄбÂÊΪ$-\frac{16}{25}$£¬
¡àÖ±ÏßCDÓëÖ±ÏßOM²»´¹Ö±£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²é¹ì¼£·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÔ²×¶ÇúÏßλÖùØÏµµÄ×ÛºÏÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®
| A£® | ÈÎÒâx¡ÊR£¬|x|+x2£¼0 | B£® | ´æÔÚx¡ÊR£¬|x|+x2¡Ü0 | ||
| C£® | ´æÔÚx0¡ÊR£¬|x0|+x02£¼0 | D£® | ´æÔÚx0¡ÊR£¬|x0|+x02¡Ý0 |
| A£® | £¨3£¬4£© | B£® | £¨2£¬5£© | C£® | £¨2£¬3£©¡È£¨3£¬5£© | D£® | £¨-¡Þ£¬2£©¡È£¨5£¬+¡Þ£© |
| A£® | ¡°x£¾2¡±ÊÇ¡°x2-2x£¾0¡±³ÉÁ¢µÄ±ØÒªÌõ¼þ | |
| B£® | ÃüÌâ¡°Èôx2=1£¬Ôòx=1¡±µÄÄæ·ñÃüÌâΪ¼ÙÃüÌâ | |
| C£® | ÃüÌâ¡°p£º?x¡ÊR£¬x2¡Ý0¡±µÄ·ñ¶¨ÐÎʽΪ¡°©Vp£º?x0¡ÊR£¬x02¡Ý0¡± | |
| D£® | £®ÒÑÖªÏòÁ¿$\overrightarrow a£¬\overrightarrow b$£¬Ôò¡°$\overrightarrow a¡Î\overrightarrow b$¡±ÊÇ¡°$\overrightarrow a+\overrightarrow b=\overrightarrow 0$¡±µÄ³äÒªÌõ¼þ |
| A£® | ƽÐÐËıßÐÎ | B£® | ÁâÐÎ | C£® | ÌÝÐÎ | D£® | ¾ØÐÎ |
| A£® | $[{\frac{3}{2}£¬5}]$ | B£® | $[{\frac{2}{3}£¬5}]$ | C£® | $[{\frac{3}{2}£¬7}]$ | D£® | $[{\frac{2}{3}£¬7}]$ |