题目内容
| 1 |
| 2 |
| AB |
| a |
| AD |
| b |
| a |
| b |
| BO |
| BO |
考点:平面向量的基本定理及其意义
专题:计算题,平面向量及应用
分析:先化简
=
-
=
-
;从而得到
=x
=x(
-
);同理可得(1-x)
+x
=y(
+2
);从而解得.
| BD |
| AD |
| AB |
| b |
| a |
| BO |
| BD |
| b |
| a |
| a |
| b |
| a |
| b |
解答:
解:由题意,
=
-
=
-
;
∵O,B,D三点共线,
∴
=x
=x(
-
);
=
+
=
+x(
-
)=(1-x)
+x
;
=
+
=
+2
;
则由A,O,C三点共线知,
(1-x)
+x
=y(
+2
);
故
;
解得x=
,y=
;
故
=
(
-
)=-
+
;
故答案为:-
+
.
| BD |
| AD |
| AB |
| b |
| a |
∵O,B,D三点共线,
∴
| BO |
| BD |
| b |
| a |
| AO |
| AB |
| BO |
| a |
| b |
| a |
| a |
| b |
| AC |
| AB |
| BC |
| a |
| b |
则由A,O,C三点共线知,
(1-x)
| a |
| b |
| a |
| b |
故
|
解得x=
| 2 |
| 3 |
| 1 |
| 3 |
故
| BO |
| 2 |
| 3 |
| b |
| a |
| 2 |
| 3 |
| a |
| 2 |
| 3 |
| b |
故答案为:-
| 2 |
| 3 |
| a |
| 2 |
| 3 |
| b |
点评:本题考查了平面向量的应用,属于基础题.
练习册系列答案
相关题目
已知集合,则A={{1,2,3,4,5,6},B={y|y=
,x∈A},则 A∩B=( )
| x |
| A、{1,2} |
| B、{1,2,3} |
| C、{1,3,5} |
| D、{1,2,3,4,5,6} |
已知点P(2,y)在抛物线y2=4x上,则P点到焦点F的距离为( )
| A、2 | ||
| B、3 | ||
C、
| ||
D、
|