题目内容

6.运行如图程序框图,若对任意输入的实数x,有f(x)≥a成立,且存在实数x0,使得f(x0)=a成立,则实数a的值为(  )
A.-4B.0C.4D.-4或0

分析 题意等价于“已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x≥0}\\{{x}^{2}-ax,x<0}\end{array}\right.$的最小值是a,求a的值.”分类讨论,利用函数的图象,即可得出结论.

解答 解:题意等价于“已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x≥0}\\{{x}^{2}-ax,x<0}\end{array}\right.$的最小值是a,求a的值.”
当a≥0时,如图11(1),f(x)无最小值;
当a<0时,如图11(2),f(x)最小值是f($\frac{a}{2}$)=-$\frac{{a}^{2}}{4}$,
∴-$\frac{{a}^{2}}{4}$=a,
∴a=0(舍)或a=-4.
故选A.

点评 本题考查程序框图,考查数形结合的数学思想,正确运用函数的图象是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网