题目内容
在等差数列{an}中,若a2=3,a6=11,则a4等于( )
| A、5 | B、6 | C、7 | D、9 |
考点:等差数列的通项公式
专题:等差数列与等比数列
分析:由等差数列的性质可得2a4=a2+a6,代值计算可得.
解答:
解:由等差数列的性质可得:
2a4=a2+a6=3+11=14,
解得a4=7
故选:C
2a4=a2+a6=3+11=14,
解得a4=7
故选:C
点评:本题考查等差数列的性质,属基础题.
练习册系列答案
相关题目
双曲线x2-
=1的焦点到渐近线的距离是( )
| y2 |
| 3 |
A、
| ||
B、2
| ||
| C、2 | ||
| D、1 |
已知x∈[-2,2]、f(x)=2x分别是双曲线f(x)的左、右焦点,f(x)=2为双曲线上的一点,若∠F1PF2=90°,且△F1PF2的三边长成等差数列,则双曲线的离心率是( )
| A、2 | B、3 | C、4 | D、5 |
给出下列结论:
①若
≠
,
•
=0,则
=
;
②若
•
=
•
,则
=
;
③(
•
)
=
(
•
);
④
[
(
•
)-
(
•
)]=0;
⑤若|
+
|=|
-
|,则
⊥
其中正确的为( )
①若
| a |
| 0 |
| a |
| b |
| b |
| 0 |
②若
| a |
| b |
| b |
| c |
| a |
| c |
③(
| a |
| b |
| c |
| a |
| b |
| c |
④
| a |
| b |
| a |
| b |
| c |
| a |
| b |
⑤若|
| a |
| b |
| a |
| b |
| a |
| b |
其中正确的为( )
| A、②③④ | B、①②⑤ |
| C、④⑤ | D、③④⑤ |
若函数f(x)=x2-2x-4lnx的导函数为f′(x),则f′(x)>0的解集为( )
| A、(0,+∞) |
| B、(-1,0)∪(2,+∞) |
| C、(-1,0) |
| D、(2,+∞) |
函数f(x)=
+lg(1-2x)的定义域是( )
| 3x | ||
|
| A、(-∞,0] |
| B、(-∞,0) |
| C、(0,1) |
| D、(-∞,1) |
已知函数f(x)=
,若f(x)≥ax,则a的取值范围是( )
|
| A、(-∞,0] |
| B、(-∞,1] |
| C、[-2,1] |
| D、[-2,0] |