题目内容

已知f(x)是R上的奇函数,满足f(x+2)=f(x),当x∈(0,1)时,f(x)=2x-2,则f(log 
1
2
6)=
 
考点:抽象函数及其应用
专题:计算题,函数的性质及应用
分析:由题意先判断-3<log 
1
2
6<-2,从而可知先用f(x+2)=f(x)转化到(-1,0),再用奇偶性求函数值即可.
解答: 解:∵-3<log 
1
2
6<-2,
又∵f(x+2)=f(x),
∴f(log 
1
2
6)=f(log 
1
2
6+2)
=f(log 
1
2
3
2
),
∵-1<log 
1
2
3
2
<0,
∴0<log2
3
2
<1,
又∵f(x)是R上的奇函数,
∴f(log 
1
2
3
2
)=-f(log2
3
2

=-(2log2
3
2
-2)=-(
3
2
-2)=
1
2

故答案为:
1
2
点评:本题考查了抽象函数的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网