题目内容
12.某单位植树节计划种杨树x棵,柳树y棵,若实数x,y满足约束条件$\left\{\begin{array}{l}{2x-y>5}\\{x-y<2}\\{x<7}\end{array}\right.$,则该单位集合栽种这两种树的棵树最多为12.分析 由题意由于某单位植树节计划种杨树x棵,柳树y棵,且实数x,y满足约束条件$\left\{\begin{array}{l}{2x-y>5}\\{x-y<2}\\{x<7}\end{array}\right.$,又不等式组画出可行域,又要求栽种这两种树的棵树最多令z=x+y,则题意求解在可行域内使得z取得最大.
解答 解:由于某单位植树节计划种杨树x棵,柳树y棵,且实数x,y满足约束条件$\left\{\begin{array}{l}{2x-y>5}\\{x-y<2}\\{x<7}\end{array}\right.$,则画出可行域为:![]()
对于栽种这两种树的棵树最多,令z=x+y?y=-x+z 则题意转化为,在可行域内任意去x,y且为整数使得目标函数代表的斜率为定值-1,截距最大时的直线为过$\left\{\begin{array}{l}{x=6}\\{2x-y=4}\end{array}\right.$⇒(6,6)时使得目标函数取得最大值为:z=12.
故答案为:12.
点评 此题考查了线性规划的应用,还考查了学生的数形结合的求解问题的思想.
练习册系列答案
相关题目
20.已知函数f(x)=lnx-3x,则曲线y=f(x)在点(1,f(1))处的切线与坐标轴围成的三角形的面积为( )
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
1.平面直角坐标系中,已知点A(1,-2),B(4,0),P(a,1),N(a+1,1),当四边形PABN的周长最小时,过三点A,P,N的圆的圆心坐标是( )
| A. | (3,-$\frac{9}{8}$) | B. | (3,-$\frac{7}{8}$) | C. | (5,-$\frac{9}{8}$) | D. | (4,-$\frac{5}{8}$) |
5.设$\frac{1}{2}$<($\frac{1}{2}$)b<($\frac{1}{2}$)a,则下列不等关系成立的是( )
| A. | aa<ab<ba | B. | aa<ba<ab | C. | ab<aa<ba | D. | ab<ba<aa |
6.如图是某几何体的三视图,图中小方格单位长度为1,则该几何体外接球的表面积为( )
| A. | 8π | B. | 12π | C. | 16π | D. | 24π |