题目内容

已知f(x)=alnx+
1
2
x2(a>0),若对任意两个不等的正实数x1、x2都有
f(x1)-f(x2)
x1-x2
>2恒成立,则a的取值范围是
 
考点:函数恒成立问题
专题:函数的性质及应用
分析:依题意知,f′(x)=
a
x
+x≥2(x>0)恒成立?a≥2x-x2恒成立,令g(x)=2x-x2=-(x-1)2+1,利用二次函数的对称性、单调性与最值,可求得g(x)max,于是可得a的取值范围.
解答: 解:∵f(x)=alnx+
1
2
x2(a>0),对任意两个不等的正实数x1、x2都有
f(x1)-f(x2)
x1-x2
>2恒成立,
∴f′(x)=
a
x
+x≥2(x>0)恒成立,
∴a≥2x-x2恒成立,令g(x)=2x-x2=-(x-1)2+1,
则a≥g(x)max
∵g(x)=2x-x2为开口方向向下,对称轴为x=1的抛物线,
∴当x=1时,g(x)=2x-x2取得最大值g(1)=1,
∴a≥1.
即a的取值范围是[1,+∞).
故答案为:[1,+∞).
点评:本题考查函数恒成立问题,考查导数的几何意义与二次函数的对称性、单调性与最值,考查转化思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网