题目内容
20.已知$f(x)=\left\{\begin{array}{l}(3-a)x-a,x<1\\{log_a}x,x≥1\end{array}\right.$是(-∞,+∞)上的增函数,那么实数a的取值范围是( )| A. | (1,+∞) | B. | (1,3) | C. | (0,1)∪(1,3) | D. | $[\frac{3}{2},3)$ |
分析 根据一次函数以及对数函数的性质结合函数的单调性求出a的范围即可.
解答 解:∵$f(x)=\left\{\begin{array}{l}(3-a)x-a,x<1\\{log_a}x,x≥1\end{array}\right.$是(-∞,+∞)上的增函数,
∴$\left\{\begin{array}{l}{3-a>0}\\{a>1}\\{3-a-a≤0}\end{array}\right.$,解得:$\frac{3}{2}$≤a<3,
故选:D.
点评 本题考查了函数的单调性问题,考查一次函数以及对数函数的性质,是一道基础题.
练习册系列答案
相关题目
10.下方茎叶图如图1,为高三某班50名学生的数学考试成绩,算法框图如图2中输入的ai为茎叶图中的学生成绩,则输出的m,n分别是( )

| A. | m=26,n=12 | B. | m=38,n=12 | C. | m=12,n=12 | D. | m=24,n=10 |
11.已知函数$f(x)=\left\{\begin{array}{l}{log_{\frac{1}{3}}}x,x>0\\{2^x},x≤0\end{array}\right.$,若$f(a)>\frac{1}{2}$,则实数a的取值范围是( )
| A. | $({0,\frac{{\sqrt{3}}}{3}})$ | B. | (-1,0] | C. | $({-1,\frac{{\sqrt{3}}}{3}})$ | D. | $({-1,0})∪({0,\frac{{\sqrt{3}}}{3}})$ |
8.
在正方体ABCD-A1B1C1D1中,过点A作平面α平行平面BDC1,平面α与平面A1ADD1交于直线m,平面α与平面A1ABB1交于直线n,则直线m与直线n所成的角为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
5.如图所示是用模拟方法估计圆周率π值的程序框图,m表示估计结果,则图中空白处应填入( )

| A. | $m=\frac{n}{4000}$ | B. | $m=\frac{n}{1000}$ | C. | $m=\frac{n}{500}$ | D. | $m=\frac{n}{250}$ |
9.已知1+i是关于x的方程2x2+px+q=0(p,q∈R)的一个根,则|p+qi|( )
| A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | $3\sqrt{2}$ | D. | $4\sqrt{2}$ |