题目内容

数列{an}满足关系anan+1=1-an+1(n∈N*),且a2014=2,则a2012=
 
考点:数列的函数特性
专题:等差数列与等比数列
分析:利用递推思想解题.
解答: 解:∵数列{an}满足关系anan+1=1-an+1(n∈N*),且a2014=2,
∴a2013•2=1-2,
解得a2013=-
1
2

a2012•(-
1
2
)
=1-(-
1
2
)=
3
2

∴a2012=-3.
故答案为:-3.
点评:本题考查数列的第2012项的求法,是基础题,解题时要注意递推思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网