题目内容
已知角θ终边过点P(-4,4),求sinθ,cosθ,tanθ的值.
考点:任意角的三角函数的定义
专题:计算题,三角函数的求值
分析:直接利用任意角的三角函数的定义求解即可.
解答:
解:∵角θ终边上一点P(-4,4),∴r=
=4
由三角函数的定义可得sinθ=
=
,cosθ=
=-
,tanθ=
=-1.
| (-4)2+42 |
| 2 |
由三角函数的定义可得sinθ=
| 4 | ||
4
|
| ||
| 2 |
| -4 | ||
4
|
| ||
| 2 |
| 4 |
| -4 |
点评:本题考查任意角的三角函数的定义,基本知识的考查.
练习册系列答案
相关题目
在半径为R球面上有A,B,C三点,且AB=8
,∠ACB=60°,球心O到平面ABC的距离为6,则半径R=( )
| 3 |
| A、8 | B、10 | C、12 | D、14 |
在复平面内,复数(1+i)z=2i(i为虚数单位)的共轭复数对应的点位于( )
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |
已知集合A={x|x2-3x+2=0},B={-2,-1,1,2},则A∩B=( )
| A、{-2,-1} |
| B、{-1,2} |
| C、{1,2} |
| D、{-2,-1,1,2} |