题目内容

15.已知$\overrightarrow{m}$=(sinωx+cosωx,$\sqrt{3}$cosωx),$\overrightarrow{n}$=(cosωx-sinωx,2sinωx)(ω>0),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,若f(x)相邻两对称轴间的距离不小于$\frac{π}{2}$.
(1)求ω的取值范围;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,a=2,当ω最大时,f(A)=1,求△ABC面积的最大值.

分析 (1)函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$=(sinωx+cosωx) (cosωx-sinωx)+2$\sqrt{3}$cosωx•sinωx=cos2ωx+$\sqrt{3}$sin2ωx=2sin(2ωx+$\frac{π}{6}$),由f(x)相邻两对称轴间的距离不小于$\frac{π}{2}$,则$\frac{2π}{2ω}≥π$,解得ω的范围;                       
(2)当ω=1时,$f(A)=2sin({2A+\frac{π}{6}})=1$,求得A,由余弦定理、不等式的性质,得bc的最大值,

解答 解:(1)函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$=(sinωx+cosωx) (cosωx-sinωx)+2$\sqrt{3}$cosωx•sinωx
=cos2ωx+$\sqrt{3}$sin2ωx=2sin(2ωx+$\frac{π}{6}$),
f(x)相邻两对称轴间的距离不小于$\frac{π}{2}$∴T≥π,则$\frac{2π}{2ω}≥π$,解得0<ω≤1;                           
(2)∵当ω=1时,$f(A)=2sin({2A+\frac{π}{6}})=1$,且A∈(0,π),
∴$A=\frac{π}{3}$,$cosA=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{{{b^2}+{c^2}-4}}{2bc}=\frac{1}{2}$,
∴b2+c2=bc+4,又b2+c2≥2bc,
∴bc+4≥2bc,即bc≤4,当且仅当b=c=2时,bc=4,
∴${S_{△ABC}}=\frac{1}{2}bcsinA≤2sin\frac{π}{3}=\sqrt{3}$.       …(12分)

点评 本题考查了向量的数量积、余弦定理的综合应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网