题目内容

5.集合A={1,2,4},B={x|x2∈A},将集合A、B分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为4的是(  )
A.B.C.D.

分析 根据集合的基本运算和关系进行判断即可.

解答 解:∵A={1,2,4},B={x|x2∈A},
∴B={1,-1,$\sqrt{2}$,-$\sqrt{2}$,2,-2},
则A∩B={1,2},A∪B={1,-1,$\sqrt{2}$,-$\sqrt{2}$,2,-2,4},
A.元素x∈A且x∉B,即x∈{4},故A错误,
B.x∈A∪B且x∉A∩B,即x∈{-1,$\sqrt{2}$,-$\sqrt{2}$,-2,4},故B错误,
C.元素x∈B且x∉A,即x∈∈{-1,$\sqrt{2}$,-$\sqrt{2}$,-2,}有4个元素,故C正确,
D..x∈A∩B,即x∈{1,2},故D错误,
故选:C

点评 本题主要考查集合的基本运算和关系,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网