题目内容
已知:数列bn=
,数列{bn}前n项和Tn.求证:Tn<
.
| n+1 |
| (n+2)2•4n2 |
| 5 |
| 64 |
考点:数列与不等式的综合
专题:证明题,等差数列与等比数列
分析:bn=
=
(
-
),求和,即可证明结论.
| n+1 |
| (n+2)2•4n2 |
| 1 |
| 16 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
解答:
证明:bn=
=
[
-
],
∴Tn=
[1-
+
-
+
-
+
-
+…+
-
]
=
[1+
-
-
]<
.
| n+1 |
| (n+2)2•4n2 |
| 1 |
| 16 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
∴Tn=
| 1 |
| 16 |
| 1 |
| 9 |
| 1 |
| 4 |
| 1 |
| 16 |
| 1 |
| 9 |
| 1 |
| 25 |
| 1 |
| 16 |
| 1 |
| 36 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
=
| 1 |
| 16 |
| 1 |
| 4 |
| 1 |
| (n+1)2 |
| 1 |
| (n+2)2 |
| 5 |
| 64 |
点评:本题考查数列与不等式的综合,考查学生分析解决问题的能力,正确裂项是关键.
练习册系列答案
相关题目
一个几何体的三视图如图所示,则该几何体的体积是( )

A、
| ||||
B、
| ||||
C、
| ||||
D、4
|