题目内容
10.把二进制数101001(2)化为十进制数为41.分析 由二进制转化为十进制,只要依次累加各位数字上的数×该数位的权重,计算即可.
解答 解:把二进制数101001(2)化为十进制数为
1×20+0×21+0×22+1×23+0×24+1×25=41.
故答案为:41.
点评 本题考查了不同进制之间的转换问题,其它进制转为十进制方法均为累加数字×权重,是基础题.
练习册系列答案
相关题目
9.已知f(cosx)=sin2x,则f(-sinx)等于( )
| A. | -cos2x | B. | cos2x | C. | -sin2x | D. | sin2x |
6.已知$\overrightarrow a$与$\overrightarrow b$均为单位向量,它们的夹角为60°,那么$|3\overrightarrow a+2\overrightarrow b|$=( )
| A. | $\sqrt{7}$ | B. | 1 | C. | $\sqrt{19}$ | D. | 4 |