题目内容
15.已知命题p:“如果xy=0,那么x=0或y=0”,在命题p的逆命题,否命题,逆否命题三个命题中,真命题的个数是( )| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 利用原命题的“若p则q”形式,再结合基本概念分别写出其相应的逆命题、否命题、逆否命题.在判断真假时要注意利用等价命题的原理.
解答 解:由原命题:“如果xy=0,则x=0或y=0”为真命题;
其逆命题:“如果x=0或y=0,则xy=0”为真命题;
否命题:“如果xy≠0,则x≠0且y≠0”为真命题;
逆否命题:“如果x≠0且y≠0,则xy≠0”为真命题;
故选:D
点评 本题考查四种命题的真假判断,解题时要注意利用等价命题的原理和规律,属于基础题.
练习册系列答案
相关题目
5.若点A的坐标是(3,2),F是抛物线y2=2x的焦点,点P在抛物线上移动,为使得|PA|+|PF|取得最小值,则P点的坐标是( )
| A. | (1,2) | B. | (2,1) | C. | (2,2) | D. | (0,1) |
10.书架上有2本不同的语文书,1本数学书,从中任意取出2本,取出的书恰好都是语文书的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
7.一个车间为了规定工时定额,需要确定加工零件所花费的时间,由此进行了5次实验,收集数据如下:
由以上数据的线性回归方程估计加工100个零件所花费的时间为( )
附:回归直线的斜率和截距的最小二乘估计公式分别为$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.
| 零件数:x个 | 10 | 20 | 30 | 40 | 50 |
| 加工时间:y分钟 | 59 | 71 | 75 | 81 | 89 |
附:回归直线的斜率和截距的最小二乘估计公式分别为$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.
| A. | 124分钟 | B. | 150分钟 | C. | 162分钟 | D. | 178分钟 |
8.已知p:函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x+b在R上是增函数,q:函数f(x)=xa-2在(0,+∞)上是增函数,则p是¬q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |