题目内容
15.在正方体ABCD-A1B1C1D1中,B1C和平面ABCD所成的角的度数为45°.分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出B1C和平面ABCD所成的角的度数.
解答
解以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设正方体ABCD-A1B1C1D1中棱长为1,
B1(1,1,1),C(0,1,0),$\overrightarrow{{B}_{1}C}$=(-1,0,-1),
面ABCD的法向量$\overrightarrow{n}$=(0,0,1),
设B1C和平面ABCD所成的角为θ,
则sinθ=$\frac{|\overrightarrow{{B}_{1}C}•\overrightarrow{n}|}{|\overrightarrow{{B}_{1}C}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
∴θ=45°.
∴B1C和平面ABCD所成的角的度数为45°.
故答案为:45°.
点评 本题考查线面角的大小的求法,是基础题,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关题目
6.已知|$\overrightarrow a$|=|$\overrightarrow b$|=1,|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{2}$,则|$\overrightarrow a$+$\overrightarrow b$|=( )
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
3.在某学校进行的一次语文与历史成绩中,随机抽取了25位考生的成绩进行分析,25位考生的语文成绩已经统计在茎叶图中,历史成绩如下:
85 52 64 49 55 71 90 66 46 66 39 61 56
78 67 77 58 73 42 80 72 67 70 51 65
(Ⅰ)请根据数据在茎叶图中完成历史成绩统计;
(Ⅱ)请根据数据完成语文成绩的频数分布表及语文成绩的频率分布直方图;

语文成绩的频数分布表:
(Ⅲ)设上述样本中第i位考生的语文、历史成绩分别为xi,yi(i=1,2,…,25).通过对样本数据进行初步处理发现:语文、历史成绩具有线性相关关系,得到:
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}$xi=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85.
①求y关于x的线性回归方程;
②并据此预测,当某考生的语文成绩为100分时,该生历史成绩.(精确到0.1分)
附:回归直线方程的斜率和截距的最小二乘法估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-\overline{n}x•\overline{y}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
85 52 64 49 55 71 90 66 46 66 39 61 56
78 67 77 58 73 42 80 72 67 70 51 65
(Ⅰ)请根据数据在茎叶图中完成历史成绩统计;
(Ⅱ)请根据数据完成语文成绩的频数分布表及语文成绩的频率分布直方图;
语文成绩的频数分布表:
| 语文成绩分组 | [50,60) | [60,70) | [70,80) | [90,100) | [100,110) | [110,120] |
| 频数 |
$\overline{x}$=$\frac{1}{25}$$\sum_{i=1}^{25}$xi=86,$\overline{y}$=$\frac{1}{25}$$\sum_{i=1}^{25}$yi=64,$\sum_{i=1}^{25}$(xi-$\overline{x}$)(yi-$\overline{y}$)=4698,$\sum_{i=1}^{25}$(xi-$\overline{x}$)2=5524,$\frac{4698}{5524}$≈0.85.
①求y关于x的线性回归方程;
②并据此预测,当某考生的语文成绩为100分时,该生历史成绩.(精确到0.1分)
附:回归直线方程的斜率和截距的最小二乘法估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-\overline{n}x•\overline{y}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
10.如果复数z=$\frac{3-i}{2+i}$(i为虚数单位),则|z|=( )
| A. | 1 | B. | 4 | C. | 2 | D. | $\sqrt{2}$ |
20.已知直线l的方程为ax+2y-3=0,且a∈[-5,4],则直线l的斜率不小于1的概率为( )
| A. | $\frac{2}{9}$ | B. | $\frac{7}{9}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
7.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{lo{g}_{\frac{1}{2}}(-x),x<0}\end{array}\right.$,则f(x)( )
| A. | 为奇函数且有(-∞,0)上为增函数 | B. | 为偶函数且有(-∞,0)上为增函数 | ||
| C. | 为奇函数且有(-∞,0)上为减函数 | D. | 为偶函数且有(-∞,0)上为减函数 |
4.已知向量$\overrightarrow{a}$=($\sqrt{2}$,$\sqrt{2}$),$\overrightarrow{b}$=(cosx,sinx),$\overrightarrow{a}•\overrightarrow{b}$=$\frac{8}{5}$,且$\frac{π}{4}<x<\frac{π}{2}$,则cos(x+$\frac{π}{4}$)的值为( )
| A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
5.
如图,在四边形ABCD中,∠B=120°,∠C=150°,且AB=3,BC=1,CD=2,则AD的长所在的区间为( )
| A. | (2,3) | B. | (3,4) | C. | (4,5) | D. | (5,6) |