题目内容
4.已知向量$\overrightarrow{a}$=($\sqrt{2}$,$\sqrt{2}$),$\overrightarrow{b}$=(cosx,sinx),$\overrightarrow{a}•\overrightarrow{b}$=$\frac{8}{5}$,且$\frac{π}{4}<x<\frac{π}{2}$,则cos(x+$\frac{π}{4}$)的值为( )| A. | -$\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
分析 由平面向量的数量积和三角函数公式可得sin(x+$\frac{π}{4}$),再由角的范围和同角三角函数基本关系可得.
解答 解:∵向量$\overrightarrow{a}$=($\sqrt{2}$,$\sqrt{2}$),$\overrightarrow{b}$=(cosx,sinx),$\overrightarrow{a}•\overrightarrow{b}$=$\frac{8}{5}$,
∴$\overrightarrow{a}•\overrightarrow{b}$=$\sqrt{2}$cosx+$\sqrt{2}$sinx=2sin(x+$\frac{π}{4}$)=$\frac{8}{5}$,
∴sin(x+$\frac{π}{4}$)=$\frac{4}{5}$,
又∵$\frac{π}{4}<x<\frac{π}{2}$,
∴$\frac{π}{2}$<x+$\frac{π}{4}$<$\frac{3π}{4}$,
∴cos(x+$\frac{π}{4}$)=-$\sqrt{1-si{n}^{2}(x+\frac{π}{4})}$=-$\frac{3}{5}$,
故选:A.
点评 本题考查两角和与差的三角函数公式,涉及平面向量的数量积运算,属基础题.
练习册系列答案
相关题目
19.复数z=$\frac{2}{1+i}$(i是虚数单位)的共轭复数在复平面内对应的点是( )
| A. | (1,1) | B. | (1,-1) | C. | (-1,1) | D. | (-1,-1) |