题目内容
6.已知|$\overrightarrow a$|=|$\overrightarrow b$|=1,|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{2}$,则|$\overrightarrow a$+$\overrightarrow b$|=( )| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
分析 利用向量的数量积的运算和向量的模的计算即可求出.
解答 解:|$\overrightarrow a$|=|$\overrightarrow b$|=1,|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{2}$,
∴|$\overrightarrow a$-$\overrightarrow b$|2=|$\overrightarrow a$|2+|$\overrightarrow b$|2-2$\overrightarrow{a}•\overrightarrow{b}$=1+1-2$\overrightarrow{a}•\overrightarrow{b}$=2,
∴2$\overrightarrow{a}•\overrightarrow{b}$=0
∴|$\overrightarrow a$+$\overrightarrow b$|2=|$\overrightarrow a$|2+|$\overrightarrow b$|2+2$\overrightarrow{a}•\overrightarrow{b}$=2,
∴|$\overrightarrow a$+$\overrightarrow b$|=$\sqrt{2}$,
故选:B.
点评 本题考查了向量的数量积的运算和向量的模的计算,属于基础题.
练习册系列答案
相关题目
2.已知f(x)=2cos$\frac{π}{6}$x,则f(0)+f(1)+f(2)+…f(2006)=( )
| A. | 0 | B. | 2 | C. | 2+$\sqrt{3}$ | D. | 3+$\sqrt{3}$ |
1.设a>0,b>0( )
| A. | 若lna+2a=lnb+3b,则a>b | B. | 2a+2a=2b+3b,则a<b | ||
| C. | 若lna-2a=lnb-3b,则a>b | D. | 2a-2a=2b-3b,则a<b |
11.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:
其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,-1代表“不良好,绝收”.
(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;
(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?
(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.
附:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
| 生长指数 | 2 | 1 | 0 | -1 | ||
| 地域 | 南区 | 空气质量好 | 45 | 54 | 26 | 35 |
| 空气质量差 | 7 | 16 | 12 | 5 | ||
| 北区 | 空气质量好 | 70 | 105 | 20 | 25 | |
| 空气质量差 | 19 | 38 | 18 | 5 | ||
(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;
(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?
(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.
附:
| P(K2≥k) | 0.050 | 0.010 | 0.001 |
| k | 3.841 | 6.635 | 10.828 |