题目内容
15.已知函数f(x)的定义域为R,对任意x1<x2,有f(x1)-f(x2)<x1-x2,且f(-3)=-4,则不等式f(log${\;}_{\frac{1}{2}}$|3x-1|)>log${\;}_{\frac{1}{2}}$|3x-1|-1的解集为( )| A. | (2,+∞) | B. | (-∞,2) | C. | (0,1)∪(1,2) | D. | (-∞,0)∪(0,2) |
分析 由题意可得函数R(x)=f(x)-x是R上的增函数,由不等式f(log${\;}_{\frac{1}{2}}$|3x-1|)>log${\;}_{\frac{1}{2}}$|3x-1|-1,可得f(log${\;}_{\frac{1}{2}}$|3x-1|)-log${\;}_{\frac{1}{2}}$|3x-1|>-1=f(-3)-(-3),得到log${\;}_{\frac{1}{2}}$|3x-1|>-3,由此求得x的范围.
解答 解:∵函数f(x)的定义域为R,对任意x1<x2,有f(x1)-f(x2)<x1-x2,
即 $\frac{[f{(x}_{1}){-x}_{1}]-[f{(x}_{2}){-x}_{2}]}{{x}_{1}{-x}_{2}}$>0,
故函数R(x)=f(x)-x是R上的增函数,
由不等式f(log${\;}_{\frac{1}{2}}$|3x-1|)>log${\;}_{\frac{1}{2}}$|3x-1|-1,可得f(log${\;}_{\frac{1}{2}}$|3x-1|)-log${\;}_{\frac{1}{2}}$|3x-1|>-1=f(-3)-(-3),
∴log${\;}_{\frac{1}{2}}$|3x-1|>-3,故-8<3x-1<8,解得:x<2,
由3x-1≠0,解得:x≠0,
故选:D.
点评 本题主要考查函数的单调性和奇偶性的应用,判断函数R(x)=f(x)+x是R上的增函数,是解题的关键,属于中档题.
练习册系列答案
相关题目
6.已知实数x,y满足$\left\{\begin{array}{l}x+y-2≥0\\ 2x-y-4≤0\\ x-2y+1≥0\end{array}\right.$,则目标函数z=2x+y的最大值是( )
| A. | 6 | B. | 7 | C. | 8 | D. | 9 |
5.若2sin70°-sin10°=λsin80°,则λ=( )
| A. | 1 | B. | -1 | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |