题目内容
18.已知数列{an},a1=2,an=$\frac{1}{n}$+(1-$\frac{1}{n}$)an-1(n≥2,n∈N*).(1)证明:数列{nan}是等差数列;
(2)记bn=$\frac{1}{{n}^{2}{a}_{n}}$,{bn}的前n项和Sn,求证Sn<1.
分析 (1)根据数列的递推公式和等差数列的定义即可证明,
(2)先求出bn,再裂项求和和放缩即可证明.
解答 证明:(1)∵an=$\frac{1}{n}$+(1-$\frac{1}{n}$)an-1,
∴nan=(n-1)an-1+1,
∴nan-(n-1)an-1=1,
∵a1=2,
∴1×a1=2,
∴数列{nan}是等差数列是以2为首项,以1为公差的等差数列;
(2)由(1)可得nan=n+1,
∴an=$\frac{n+1}{n}$,
∴bn=$\frac{1}{{n}^{2}{a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
那么Sn=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$<1
点评 本题考查了数列的通项公式和裂项求和,考查了学生的运算能力和转化能力,属于中档题
练习册系列答案
相关题目
19.已知集合A={0,1,2},B={x|1≤x≤4},集合A∩B=( )
| A. | ∅ | B. | {1,2} | C. | [1,2] | D. | (1,2) |
6.函数y=$\frac{1-cosx}{sinx}$图象的对称中心是( )
| A. | ($\frac{kπ}{2}$,0)(k∈Z) | B. | (kπ+$\frac{π}{2}$,0)(k∈Z) | C. | (kπ+$\frac{π}{4}$,0)(k∈Z) | D. | (kπ,0)(k∈Z) |
13.已知直线x=$\frac{b}{2}$与椭圆C:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1$(a>b>0)交于A、B两点,若椭圆C的两个焦点与A、B两点可以构成一个矩形,则椭圆C的离心率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{10}}{4}$ |
3.在曲线C上的动点P(a,a2+2a)与动点Q(b,b2+2b)(a<b<0)的切线互相垂直,则b-a最小值为( )
| A. | 1 | B. | 2 | C. | $\sqrt{2}$ | D. | -$\sqrt{2}$ |
10.已知函数f(x)=xlnx+x(x-a)2(a∈R),若存在$x∈[{\frac{1}{2},2}]$,使得f(x)>xf'(x)成立,则实数a的取值范围是( )
| A. | $({\frac{9}{4},+∞})$ | B. | $({\frac{3}{2},+∞})$ | C. | $({\sqrt{2},+∞})$ | D. | (3,+∞) |
8.已知等比数列{an}的前n项和为Sn,则“a1>0”是“S2017>0”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |