题目内容
设
=(1+cosα,sinα),
=(1-cosβ,sinβ),
=(1,0),α∈(0,π),β∈(π,2π),
与
的夹角为θ1,
与
的夹角为θ2,若θ1-θ2=
,求sin
的值.
| a |
| b |
| c |
| a |
| c |
| b |
| c |
| π |
| 4 |
| α-β |
| 2 |
考点:平面向量数量积的运算
专题:三角函数的求值,平面向量及应用
分析:由α∈(0,π),可得
∈(0,
).利用向量的夹角公式可得cosθ1=
=cos
,可得θ1=
.同理可得θ2=
-
.再利用θ1-θ2=
,即可得出sin
的值.
| α |
| 2 |
| π |
| 2 |
| ||||
|
|
| α |
| 2 |
| α |
| 2 |
| β |
| 2 |
| π |
| 2 |
| π |
| 4 |
| α-β |
| 2 |
解答:
解:α∈(0,π),∴
∈(0,
).
∵
•
=1+cosα,|
|=
=
,|
|=1,∴cosθ1=
=
=
=
=cos
,∴θ1=
.
∵β∈(π,2π),∴
∈(
,π),∴(
)∈(0,
).
∵
•
=1-cosβ,|
|=
=
,∴cosθ2=
=
=
=sin
=cos(
-
),∴θ2=
-
.
∵θ1-θ2=
,∴
-(
-
)=
,化为
=-
sin
=sin(-
)=-
.
| α |
| 2 |
| π |
| 2 |
∵
| a |
| c |
| a |
| (1+cosα)2+sin2α |
| 2+2cosα |
| c |
| ||||
|
|
| 1+cosα | ||
|
|
cos2
|
| α |
| 2 |
| α |
| 2 |
∵β∈(π,2π),∴
| β |
| 2 |
| π |
| 2 |
| β-π |
| 2 |
| π |
| 2 |
∵
| b |
| c |
| b |
| (1-cosβ)2+sin2β |
| 2-2cosβ |
| ||||
|
|
| 1-cosβ | ||
|
|
| β |
| 2 |
| β |
| 2 |
| π |
| 2 |
| β |
| 2 |
| π |
| 2 |
∵θ1-θ2=
| π |
| 4 |
| α |
| 2 |
| β |
| 2 |
| π |
| 2 |
| π |
| 4 |
| α-β |
| 2 |
| π |
| 4 |
sin
| α-β |
| 2 |
| π |
| 4 |
| ||
| 2 |
点评:本题考查了向量的夹角公式、数量积运算、倍角公式,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关题目