题目内容
设P在[0,5]上随机地取值,则关于x的方程x2+px+1=0有实数根的概率为 .
考点:几何概型
专题:计算题,概率与统计
分析:由题意知方程的判别式大于等于零求出p的范围,再判断出所求的事件符合几何概型,再由几何概型的概率公式求出所求事件的概率.
解答:
解:若方程x2+px+1=0有实根,则△=p2-4≥0,
解得,p≥2或 p≤-2;
∵记事件A:“P在[0,5]上随机地取值,关于x的方程x2+px+1=0有实数根”,
由方程x2+px+1=0有实根符合几何概型,
∴P(A)=
=
.
故答案为:
.
解得,p≥2或 p≤-2;
∵记事件A:“P在[0,5]上随机地取值,关于x的方程x2+px+1=0有实数根”,
由方程x2+px+1=0有实根符合几何概型,
∴P(A)=
| 5-2 |
| 5 |
| 3 |
| 5 |
故答案为:
| 3 |
| 5 |
点评:本题考查了求几何概型下的随机事件的概率,即求出所有实验结果构成区域的长度和所求事件构成区域的长度,再求比值.
练习册系列答案
相关题目
已知等差数列{an}中,前n项和为Sn,且a1>0,S30=S70,则( )
| A、Sn取最大值时,n=100 |
| B、Sn取最小值时,n=40 |
| C、Sn取最大值时,n=50 |
| D、以上答案都不对 |