题目内容
已知{an}是等差数列,a1=3,Sn是其前n项和,在各项均为正数的等比数列{bn}中,b1=1,且b2+S2=10,S5=5b3+3a2.
(I )求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
,数列{cn}的前n项和为Tn,求证Tn<
.
(I )求数列{an},{bn}的通项公式;
(Ⅱ)设cn=
| 2 |
| Sn |
| 3 |
| 2 |
考点:数列的求和
专题:综合题,等差数列与等比数列
分析:(I )设等差数列{an}的公差为d,等比数列{bn}的公比为q,依题意,列方程组
,可求得q及d,从而可得数列{an},{bn}的通项公式;
(Ⅱ)由(Ⅰ)知Sn=
=n2+2n,cn=
=
-
,于是可求得Tn=
-
-
,从而可证得结论.
|
(Ⅱ)由(Ⅰ)知Sn=
| n(3+2n+1) |
| 2 |
| 2 |
| Sn |
| 1 |
| n |
| 1 |
| n+2 |
| 3 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
解答:
解:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q,
∵a1=3,b1=1,b2+S2=10,S5=5b3+3a2,
∴
,
解得q=2或q=-
(舍),d=2.
∴数列{an}的通项公式是an=2n+1,数列{bn}的通项公式是bn=2n-1.
(Ⅱ)证明:由(Ⅰ)知Sn=
=n2+2n,
于是cn=
=
-
,
∴Tn=(1-
)+(
-
)+(
-
)+…+(
-
)
=1+
-
-
=
-
-
<
.
∵a1=3,b1=1,b2+S2=10,S5=5b3+3a2,
∴
|
解得q=2或q=-
| 17 |
| 5 |
∴数列{an}的通项公式是an=2n+1,数列{bn}的通项公式是bn=2n-1.
(Ⅱ)证明:由(Ⅰ)知Sn=
| n(3+2n+1) |
| 2 |
于是cn=
| 2 |
| Sn |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=(1-
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
=1+
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 2 |
点评:本题考查数列的求和,着重考查等差数列的通项公式与求和公式,考查裂项法求和,考查运算与求解能力,属于难题.
练习册系列答案
相关题目
| A、n>1000 |
| B、n≥1000 |
| C、n>999 |
| D、n≤999 |