题目内容

已知tanα,tanβ是关于x的方程x2+(logaM+logbM)x-logaM•logbM=0的两个根,其中a、b,M均为不等于1的正数,若sinαcosβ+cosαsinβ=2sinαsinβ,则a,b,M满足的关系是(  )
A、
a+b
2
=M
B、
ab
=M
C、a+b=M
D、ab=M
考点:对数的运算性质
专题:函数的性质及应用,三角函数的求值
分析:根据韦达定理,得到tanαt+anβ=-(logaM+logbM)=-logaM•logbMlogMab,tanαtanβ=-logaM•logbM,再根据三角形函数的化简得到tanα+tanβ=2tanαtanβ,计算即可
解答: 解:∵sinαcosβ+cosαsinβ=2sinαsinβ,
∴tanα+tanβ=2tanαtanβ
∵tanα,tanβ是关于x的方程x2+(logaM+logbM)x-logaM•logbM=0的两个根,
∴tanαt+anβ=-(logaM+logbM)=-logaM•logbMlogMab,tanαtanβ=-logaM•logbM,
∴-logaM•logbMlogMab=-2logaM•logbM,
∴logMab=2,
ab
=M
故选:B
点评:本题考查了韦达定理和三角函数的化简,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网