题目内容

在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=acosθ(a>0),过点P(-2,-4)的直线l的参数方程为
x=-2+
2
2
t
y=-4+
2
2
t
 (t为参数),直线l与曲线C相交于A,B两点.
(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.
考点:参数方程化成普通方程,点的极坐标和直角坐标的互化
专题:坐标系和参数方程
分析:(Ⅰ)把曲线C的极坐标方程、直线l的参数方程化为普通方程即可;
(Ⅱ)把直线l的参数方程代入曲线C的直角坐标方程中,得关于t的一元二次方程,由根与系数的关系,求出t1、t2的关系式,结合参数的几何意义,求出a的值.
解答: 解:(Ⅰ)曲线C的极坐标方程ρsin2θ=acosθ(a>0),
可化为ρ2sin2θ=aρcosθ(a>0),
即y2=ax(a>0);(2分)
直线l的参数方程为
x=-2+
2
2
t
y=-4+
2
2
t
 (t为参数),
消去参数t,化为普通方程是y=x-2;(4分)
(Ⅱ)将直线l的参数方程代入曲线C的直角坐标方程y2=ax(a>0)中,
t2-
2
(a+8)t+4(a+8)=0

设A、B两点对应的参数分别为t1,t2
t1+t2=
2
(a+8),t1t2=4(a+8)
;(6分)
∵|PA|•|PB|=|AB|2
(t1-t2)2=t1t2
(t1+t2)2=5t1t2;(9分)
[
2
(8+a)]2=20(8+a)

解得:a=2,或a=-8(舍去);
∴a的值为2.(12分)
点评:本题考查了参数方程与极坐标的应用问题,也考查了直线与圆锥曲线的应用问题,解题时应先把参数方程与极坐标化为普通方程,再解答问题,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网