题目内容

已知函数y=Asin(ωx+φ)(A>0,ω>0)的图象过点P(
π
12
,0),图象与P点最近的一个最高点坐标为(
π
3
,5).
(1)求函数的解析式;
(2)求函数的最大值,并写出相应的x的值;
(3)求使y≤0时,x的取值范围.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的图像与性质
分析:(1)由函数的最大值求A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
(2)利用正弦函数取最大值的条件以及函数的最大值,得出结论.
(3)由5sin(2x-
π
6
)≤0,可得2kπ-π≤2x-
π
6
≤2kπ(k∈Z),由此求得x的取值范围.
解答: 解:(1)由题意知
T
4
=
π
3
-
π
12
=
π
4
,∴T=π.
∴ω=
T
=2,由ω•
π
12
+φ=0,得φ=-
π
6
,又A=5,∴y=5sin(2x-
π
6
).
(2)函数的最大值为5,此时,2x-
π
6
=2kπ+
π
2
(k∈Z).∴x=kπ+
π
3
(k∈Z).
(3)∵5sin(2x-
π
6
)≤0,∴2kπ-π≤2x-
π
6
≤2kπ(k∈Z).
∴x的取值范围是{x|kπ-
12
≤x≤kπ+
π
12
,(k∈Z)}.
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,正弦函数的值域,解三角不等式,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网