ÌâÄ¿ÄÚÈÝ
20£®ÒÑÖªµãM£¬NÊÇÆ½ÃæÇøÓò$\left\{\begin{array}{l}{2x-y-4¡Ü0}\\{x-2y+4¡Ý0}\\{x+y-2¡Ý0}\end{array}\right.$ÄÚµÄÁ½¸ö¶¯µã£¬$\overrightarrow{a}$=£¨1£¬2£©£¬Ôò$\overrightarrow{MN}$•$\overrightarrow{a}$µÄ×î´óֵΪ£¨¡¡¡¡£©| A£® | 2$\sqrt{5}$ | B£® | 10 | C£® | 12 | D£® | 8 |
·ÖÎö ¸ù¾ÝÌâÒâ×÷³ö¿ÉÐÐÓò£¬Æ½ÒÆÏòÁ¿£¬ÀûÓÃÏòÁ¿ÊýÁ¿»ýµÄ¼¸ºÎÒâÒå¼´ÇóÔÚ$\overrightarrow{a}$ÉϵÄͶӰÅжÏABÁ½µãµÄλÖ㬼´¿ÉµÃµ½½áÂÛ
½â´ð
½â£ºÆ½ÃæÇøÓò$\left\{\begin{array}{l}{2x-y-4¡Ü0}\\{x-2y+4¡Ý0}\\{x+y-2¡Ý0}\end{array}\right.$µÄ¿ÉÐÐÓòÈçͼ£ºÆ½ÒÆ$\overrightarrow{a}$ÖÁ¿ÉÐÐÓòµÄM£¬
ÓÉ¿ÉÐÐÓò¿ÉÖª£¬$\overrightarrow{MN}•\overrightarrow{a}$µÄ×î´óÖµ¾ÍÊÇ$\overrightarrow{MN}$ÔÚ$\overrightarrow{a}$ÉϵÄͶӰȡµÃ×î´óÖµ£®
ÓÉ$\left\{\begin{array}{l}{2x-y-4=0}\\{x+y-2=0}\end{array}\right.$¿ÉµÃM£¨2£¬0£©£¬ÓÉ$\left\{\begin{array}{l}{2x-y-4=0}\\{x-2y+4=0}\end{array}\right.$µÃµ½N£¨4£¬4£©£¬$\overrightarrow{MN}$=£¨2£¬4£©£¬
´Ëʱ$\overrightarrow{MN}$•$\overrightarrow{a}$=1¡Á2+2¡Á4=10£®
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éÏßÐԹ滮¡¢ÏòÁ¿µÄ×ø±ê±íʾ¡¢Æ½ÃæÏòÁ¿ÊýÁ¿»ýµÄ¼¸ºÎÒâÒåµÈ»ù´¡ÖªÊ¶£¬¿¼²éÊýÐνáºÏµÄÊýѧ˼Ï룬ÊôÓÚÖеµÌ⣮
| A£® | 6 | B£® | 9 | C£® | 10 | D£® | 12 |
| A£® | 1 | B£® | -1 | C£® | -i | D£® | i |
| A£® | ³ä·Ö·Ç±ØÒªÌõ¼þ | B£® | ±ØÒª·Ç³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È·Ç³ä·ÖÓַDZØÒªÌõ¼þ |
| A£® | ´æÔÚt¡ÊR£¬Ê¹f£¨x£©¡Ý2ÔÚ[t-$\frac{1}{2}$£¬t+$\frac{1}{2}$]ÉϺã³ÉÁ¢ | |
| B£® | ´æÔÚt¡ÊR£¬Ê¹0¡Üf£¨x£©¡Ü2ÔÚ[t-$\frac{1}{2}$£¬t+$\frac{1}{2}$]ÉϺã³ÉÁ¢ | |
| C£® | ´æÔÚt¡ÊR£¬Ê¹f£¨x£©ÔÚ[t-$\frac{1}{2}$£¬t+$\frac{1}{2}$]ÉÏʼÖÕ´æÔÚ·´º¯Êý | |
| D£® | ´æÔÚt¡ÊR+£¬Ê¹f£¨x£©ÔÚ[t-$\frac{1}{2}$£¬t+$\frac{1}{2}$]ÉÏʼÖÕ´æÔÚ·´º¯Êý |