题目内容
4.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为( )| A. | $\frac{x^2}{18}-\frac{y^2}{8}=1$ | B. | $\frac{x^2}{36}-\frac{y^2}{16}=1$ | C. | $\frac{x^2}{8}-\frac{y^2}{18}=1$ | D. | $\frac{x^2}{16}-\frac{y^2}{36}=1$ |
分析 设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),求得渐近线方程,由题意可得$\frac{b}{a}$=$\frac{3}{2}$,运用点到直线的距离公式,解方程可得a=4,b=6,进而得到双曲线的方程.
解答 解:设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),
可得渐近线方程为y=±$\frac{b}{a}$x,
由题意可得$\frac{b}{a}$=$\frac{3}{2}$,
设一个焦点为(c,0),可得$\frac{3c}{\sqrt{9+4}}$=6,
可得c=2$\sqrt{13}$,即a2+b2=52,
解得a=4,b=9,
则双曲线的方程为$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{36}$=1.
故选:D.
点评 本题考查双曲线的方程的求法,注意运用待定系数法,考查渐近线方程和点到直线的距离公式,考查运算能力,属于基础题.
练习册系列答案
相关题目
16.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,它的一个顶点到较近焦点的距离为1,焦点到渐近线的距离是$\sqrt{3}$,则双曲线C的方程为( )
| A. | x2-$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{3}$-y2=1 | C. | $\frac{{x}^{2}}{\sqrt{3}}$-y2=1 | D. | x2-$\frac{{y}^{2}}{9}$=1 |